Expressive power of LL(k) Boolean grammars

The paper studies the family of Boolean LL languages, generated by Boolean grammars and usable with the recursive descent parsing. It is demonstrated that over a one-letter alphabet, these languages are always regular, while Boolean LL subsets of Σ∗a∗ obey a certain periodicity property, which, in particular, makes the language {anb2n|n⩾0} non-representable. It is also shown that linear conjunctive LL grammars cannot generate any language of the form L⋅{a,b}, with L non-regular, and that no languages of the form L⋅c∗, with non-regular L, can be generated by any linear Boolean LL grammars. These results are used to establish a detailed hierarchy and closure properties of these and related families of formal languages.

[1]  Alexander Okhotin Language Equations with Symmetric Difference , 2012, Fundam. Informaticae.

[2]  Panos Rondogiannis,et al.  Well-founded semantics for Boolean grammars , 2009, Inf. Comput..

[3]  Alexander Okhotin Comparing Linear Conjunctive Languages to Subfamilies of the Context-Free Languages , 2011, SOFSEM.

[4]  Alexander Okhotin,et al.  Recursive descent parsing for Boolean grammars , 2007, Acta Informatica.

[5]  Alexander Okhotin Expressive Power of LL(k) Boolean Grammars , 2007, FCT.

[6]  Artur Jez,et al.  One-Nonterminal Conjunctive Grammars over a Unary Alphabet , 2009, CSR.

[7]  Alexander Okhotin,et al.  Conjunctive grammars with restricted disjunction , 2010, Theor. Comput. Sci..

[8]  Derick Wood A Further Note on Top-Down Deterministic Languages , 1971, Comput. J..

[9]  Véronique Terrier,et al.  On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..

[10]  Alexander Okhotin Boolean grammars , 2004, Inf. Comput..

[11]  Alexander Okhotin A simple P-complete problem and its language-theoretic representations , 2011, Theor. Comput. Sci..

[12]  Oscar H. Ibarra,et al.  Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..

[13]  Krzysztof Lorys,et al.  Lower bound technique for length-reducing automata , 2007, Inf. Comput..

[14]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[15]  Véronique Terrier,et al.  Closure properties of cellular automata , 2006, Theor. Comput. Sci..

[16]  Sheng Yu A property of real-time trellis automata , 1986, Discret. Appl. Math..

[17]  Artur Jez,et al.  Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.

[18]  Alexander Okhotin Fast Parsing for Boolean Grammars: A Generalization of Valiant's Algorithm , 2010, Developments in Language Theory.

[19]  Alexander Okhotin,et al.  Generalized Lr Parsing Algorithm for Boolean Grammars , 2006, Int. J. Found. Comput. Sci..

[20]  Alexander Okhotin,et al.  Complexity of language equations with one-sided concatenation and all Boolean operations , 2007 .

[21]  Alexander Okhotin,et al.  On the closure properties of linear conjunctive languages , 2003, Theor. Comput. Sci..

[22]  Alexander Okhotin,et al.  Conjunctive Grammars , 2001, J. Autom. Lang. Comb..

[23]  Alexander Okhotin Notes on Dual Concatenation , 2007, Int. J. Found. Comput. Sci..

[24]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..

[25]  Daniel J. Rosenkrantz,et al.  Properties of deterministic top down grammars , 1969, STOC.

[26]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[27]  Artur Jez Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.

[28]  Artur Jez,et al.  Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.