Least-Squares Finite Element Methods and Algebraic Multigrid Solvers for Linear Hyperbolic PDEs
暂无分享,去创建一个
Thomas A. Manteuffel | Hans De Sterck | Stephen F. McCormick | Luke N. Olson | T. Manteuffel | S. McCormick | H. D. Sterck | H. Sterck
[1] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[2] V. E. Henson,et al. BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .
[3] Stephen F. McCormick,et al. Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.
[4] J. Ruge,et al. Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .
[5] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[6] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[7] Thomas A. Manteuffel,et al. A Boundary Functional for the Least-Squares Finite- Element Solution of Neutron Transport Problems , 1999, SIAM J. Numer. Anal..
[8] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[9] B. Jiang. The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .
[10] Achi Brandt,et al. Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..
[11] CaiZhiqiang,et al. First-Order System Least Squares for Second-Order Partial Differential Equations , 1997 .
[12] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .
[13] Pavel B. Bochev,et al. Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..
[14] Endre Süli,et al. hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization , 2002, J. Sci. Comput..
[15] P. Bochev,et al. A Comparative Study of Least-squares, SUPG and Galerkin Methods for Convection Problems , 2001 .
[16] Endre Süli,et al. A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.
[17] Claes Johnson,et al. Computational Differential Equations , 1996 .
[18] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[19] P. Bochev,et al. Improved Least-squares Error Estimates for Scalar Hyperbolic Problems , 2001 .
[20] R. LeVeque. Numerical methods for conservation laws , 1990 .
[21] Rémi Abgrall,et al. Toward the ultimate conservative scheme: following the quest , 2001 .
[22] Bernardo Cockburn,et al. Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .
[23] Thomas A. Manteuffel,et al. LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .
[24] Timothy J. Barth,et al. High-order methods for computational physics , 1999 .
[25] William L. Briggs,et al. A multigrid tutorial , 1987 .
[26] B. Jiang. The Least-Squares Finite Element Method , 1998 .
[27] T. Manteuffel,et al. FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .
[28] Graham F. Carey,et al. Least‐squares finite elements for first‐order hyperbolic systems , 1988 .
[29] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[30] Timothy J. Barth,et al. Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.