Importance of the Buffer Layer Properties for the Performance of Perovskite/Silicon Tandem Solar Cells

[1]  Hyunjung Shin,et al.  Nanostructured α‐Fe2O3 Photoelectrodes with Transparent and Conducting Sb‐Doped SnO2 Films Deposited by Atomic Layer Deposition , 2022, Advanced Materials Interfaces.

[2]  B. Rech,et al.  Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer , 2022, Advanced Energy Materials.

[3]  Furkan H. Isikgor,et al.  Probing Ultrafast Interfacial Carrier Dynamics in Metal Halide Perovskite Films and Devices by Transient Reflection Spectroscopy. , 2022, ACS applied materials & interfaces.

[4]  Xiaodang Zhang,et al.  Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells , 2022, Journal of Semiconductors.

[5]  Thomas G. Allen,et al.  Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells , 2022, ACS Energy Letters.

[6]  Vincent M. Le Corre,et al.  Quantification of Efficiency Losses Due to Mobile Ions in Perovskite Solar Cells via Fast Hysteresis Measurements , 2021, Solar RRL.

[7]  Thomas G. Allen,et al.  Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies , 2021, Matter.

[8]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[9]  Vincent M. Le Corre,et al.  Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions , 2021, Solar RRL.

[10]  N. Koch,et al.  Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells , 2020 .

[11]  Yiliang Wu,et al.  The Impact of Mobile Ions on the Steady-State Performance of Perovskite Solar Cells , 2020 .

[12]  Henk J. Bolink,et al.  Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient and Frequency Domain. , 2019, ACS applied materials & interfaces.

[13]  Zhengshan J. Yu,et al.  Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells , 2018, ACS Energy Letters.

[14]  Bernd Rech,et al.  It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. , 2017, ACS applied materials & interfaces.

[15]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[16]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[17]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[18]  Z. Bao,et al.  Effective Solution‐ and Vacuum‐Processed n‐Doping by Dimers of Benzimidazoline Radicals , 2014, Advanced materials.

[19]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[20]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[21]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[22]  K. Leo,et al.  Self‐passivation of molecular n‐type doping during air exposure using a highly efficient air‐instable dopant , 2013 .

[23]  Hartwin Peelaers,et al.  Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2 , 2012 .

[24]  Pietro P. Altermatt,et al.  Models for numerical device simulations of crystalline silicon solar cells—a review , 2011 .

[25]  Frank Säuberlich,et al.  Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment , 2010, Materials.

[26]  C. Körber,et al.  Surface potentials of magnetron sputtered transparent conducting oxides , 2009 .

[27]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[28]  K. Seki,et al.  Acridine orange base as a dopant for n doping of C60 thin films , 2006 .

[29]  Xianjie Liu,et al.  Leuco Crystal Violet as a Dopant for n-Doping of Organic Thin Films of Fullerene C60 , 2004 .

[30]  A. Schenk Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation , 1998 .

[31]  D.B.M. Klaassen,et al.  A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime , 1992 .

[32]  D.B.M. Klaassen,et al.  A unified mobility model for device simulation—I. Model equations and concentration dependence , 1992 .

[33]  K. Chopra,et al.  Transparent conductors—A status review , 1983 .

[34]  Z. Jarzȩbski Preparation and Physical Properties of Transparent Conducting Oxide Films , 1982, May 16.

[35]  J. P. Marton,et al.  Physical Properties of SnO2 Materials II . Electrical Properties , 1976 .