Realization of Minimum and Maximum Gate Function in Ta2O5-based Memristive Devices

Redox-based resistive switching devices (ReRAM) are considered key enablers for future non-volatile memory and logic applications. Functionally enhanced ReRAM devices could enable new hardware concepts, e.g. logic-in-memory or neuromorphic applications. In this work, we demonstrate the implementation of ReRAM-based fuzzy logic gates using Ta2O5 devices to enable analogous Minimum and Maximum operations. The realized gates consist of two anti-serially connected ReRAM cells offering two inputs and one output. The cells offer an endurance up to 106 cycles. By means of exemplary input signals, each gate functionality is verified and signal constraints are highlighted. This realization could improve the efficiency of analogous processing tasks such as sorting networks in the future.

[1]  Ondrej Šuch,et al.  Memristive sorting networks , 2015 .

[2]  N. Banno,et al.  Highly reliable, complementary atom switch (CAS) with low programming voltage embedded in Cu BEOL for Nonvolatile Programmable Logic , 2011, 2011 International Electron Devices Meeting.

[3]  S. Menzel,et al.  A HfO2‐Based Complementary Switching Crossbar Adder , 2015 .

[4]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[5]  F. Zeng,et al.  Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , 2014 .

[6]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[7]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[8]  Swarup Bhunia,et al.  Computing with nanoscale memory: Model and architecture , 2009, 2009 IEEE/ACM International Symposium on Nanoscale Architectures.

[9]  Rainer Waser,et al.  Memristive Sorting Networks Enabled by Electrochemical Metallization Cells , 2016, Int. J. Unconv. Comput..

[10]  Stephan Menzel,et al.  Simulation and comparison of two sequential logic-in-memory approaches using a dynamic electrochemical metallization cell model , 2014, Microelectron. J..

[11]  Yusuf Leblebici,et al.  GMS: Generic memristive structure for non-volatile FPGAs , 2012, 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC).

[12]  Chen Chen,et al.  Monolithic 3-D FPGAs , 2015, Proceedings of the IEEE.

[13]  P. Narayanan,et al.  Access devices for 3D crosspoint memorya) , 2014 .

[14]  U. Böttger,et al.  Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations , 2012, Nanotechnology.

[15]  Martin Klimo,et al.  Memristors can implement fuzzy logic , 2011, ArXiv.

[16]  O. Richard,et al.  10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation , 2011, 2011 International Electron Devices Meeting.

[17]  S. Menzel,et al.  Physics of the Switching Kinetics in Resistive Memories , 2015 .

[18]  S. Kvatinsky,et al.  MRL — Memristor Ratioed Logic , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[19]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[20]  Rainer Waser,et al.  Energy-efficient redox-based non-volatile memory devices and logic circuits , 2013, 2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S).

[21]  S. Bhunia,et al.  A Scalable Memory-Based Reconfigurable Computing Framework for Nanoscale Crossbar , 2012, IEEE Transactions on Nanotechnology.

[22]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[23]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[24]  Rainer Waser,et al.  Redox‐based Resistive Memory , 2014 .

[25]  T. Hasegawa,et al.  Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction , 2006 .

[26]  M. Liu,et al.  Application of nanojunction-based RRAM to reconfigurable IC , 2008 .

[27]  Anne Siemon,et al.  Low-current operations in 4F2-compatible Ta2O5-based complementary resistive switches , 2015, Nanotechnology.

[28]  H. Li,et al.  A learnable parallel processing architecture towards unity of memory and computing , 2015, Scientific Reports.

[29]  Ming Liu,et al.  3D Integration of CMOL Structures for FPGA Applications , 2011, IEEE Transactions on Computers.

[30]  Shuang Gao,et al.  Implementation of Complete Boolean Logic Functions in Single Complementary Resistive Switch , 2015, Scientific Reports.

[31]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[32]  S. Menzel,et al.  Realization of Boolean Logic Functionality Using Redox‐Based Memristive Devices , 2015 .

[33]  Peter Jancovic,et al.  On Passive Permutation Circuits , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[34]  Anupam Chattopadhyay,et al.  In-memory adder functionality in 1S1R arrays , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).