The Design of Evolutionary Multiple Classifier System for the Classification of Microarray Data

Designing an evolutionary multiple classifier system (MCS) is a relatively new research area. In this paper, we propose a genetic algorithm (GA) based MCS for microarray data classification. In detail, we construct a feature poll with different feature selection methods first, and then a multi-objective GA is applied to implement ensemble feature selection process so as to generate a set of classifiers. Then we construct an ensemble system with the individuals in last generation in two ways: using the nondominated individuals; using all the individuals accompanied with a classifier selection process based on another GA. We test the two proposed ensemble methods based on two microarray data sets, and the experimental results show that these two methods are robust and can lead to promising results.

[1]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[4]  Xin Yao,et al.  Ensemble Learning Using Multi-Objective Evolutionary Algorithms , 2006, J. Math. Model. Algorithms.

[5]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[6]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[7]  Xin Yao,et al.  An analysis of diversity measures , 2006, Machine Learning.

[8]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[9]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[10]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[11]  Marco Zaffalon,et al.  Robust Feature Selection by Mutual Information Distributions , 2002, UAI.

[12]  Thomas G. Dietterich Machine-Learning Research , 1997, AI Mag..

[13]  Yong Liu How to Stop the Evolutionary Process in Evolving Neural Network Ensembles , 2006, ICNC.

[14]  Amanda J. C. Sharkey,et al.  On Combining Artificial Neural Nets , 1996, Connect. Sci..

[15]  Luiz Eduardo Soares de Oliveira,et al.  Feature Selection for Ensembles Using the Multi-Objective Optimization Approach , 2006, Multi-Objective Machine Learning.

[16]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[17]  Xin Yao,et al.  Evolutionary ensembles with negative correlation learning , 2000, IEEE Trans. Evol. Comput..

[18]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[20]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[21]  David W. Opitz,et al.  Feature Selection for Ensembles , 1999, AAAI/IAAI.

[22]  Lakhmi C. Jain,et al.  Designing classifier fusion systems by genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[23]  Yew-Soon Ong,et al.  Advances in Natural Computation, First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part I , 2005, ICNC.

[24]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[25]  Wei Tang,et al.  Ensembling neural networks: Many could be better than all , 2002, Artif. Intell..

[26]  Ji-Xiang Du,et al.  Ensemble component selection for improving ICA based microarray data prediction models , 2009, Pattern Recognit..

[27]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[28]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.