Accuracy analysis of a covariance matching approach for identifying errors-in-variables systems

A system identification method for errors-in-variables problems based on covariance matching was recently proposed. In the first step, a small amount of covariances of noisy input-output data are computed, and then a parametric model is fitted to these covariances. In this paper, the method is further analyzed and the asymptotic accuracy of the parameter estimates is derived. An explicit algorithm for computing the asymptotic covariance matrix of the parameter estimates is given, and the identification method is shown to be asymptotically statistically efficient assuming that the given information is the computed covariances. As an important byproduct, an efficient algorithm is presented for computing the covariance matrix of the computed input-output covariances.

[1]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[2]  Torsten Söderström,et al.  Using continuous-time modeling for errors-in-variables identification , 2006 .

[3]  Torsten Söderström,et al.  Continuous-time errors-in-variables system identification through covariance matching without input signal modeling , 2009, 2009 American Control Conference.

[4]  Umberto Soverini,et al.  A New Criterion in EIV Identification and Filtering Applications , 2003 .

[5]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[6]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[7]  Torsten Söderström,et al.  Approximative weighting for a covariance‐matching approach for identifying errors‐in‐variables systems , 2011 .

[8]  Torsten Söderström,et al.  System identification for the errors-in-variables problem , 2012 .

[9]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[10]  Torsten Söderström,et al.  Non-parametric identification of viscoelastic materials from wave propagation experiments , 2001, Autom..

[11]  Torsten Söderström,et al.  Covariance Matching for Continuous-Time Errors-in-Variables Problems , 2011, IEEE Transactions on Automatic Control.

[12]  Torsten Söderström,et al.  Extending the Frisch scheme for errors‐in‐variables identification to correlated output noise , 2008 .

[13]  Torsten Söderström,et al.  Expressions for the covariance matrix of covariance data , 2009 .

[14]  Torsten Söderström,et al.  Relations between Bias-Eliminating Least Squares, the Frisch scheme and Extended Compensated Least Squares methods for identifying errors-in-variables systems , 2009, Autom..

[15]  Torsten Söderström,et al.  A covariance matching approach for identifying errors-in-variables systems , 2009, Autom..

[16]  Torsten Söderström,et al.  Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems , 2005, CDC/ECC.

[17]  Torsten Söderström,et al.  Accuracy Analysis of the Frisch Scheme for Identifying Errors-in-Variables Systems , 2007, IEEE Trans. Autom. Control..

[18]  Umberto Soverini,et al.  The Frisch scheme in algebraic and dynamic identification problems , 2008, Kybernetika.

[19]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[20]  Torsten Söderström,et al.  A generalized instrumental variable estimation method for errors-in-variables identification problems , 2011, Autom..

[21]  Thomas Bak,et al.  Data Driven Modelling of the Dynamic Wake between Two Wind Turbines , 2012 .

[22]  M. Mossberg,et al.  Errors-in-variables identification through covariance matching: Analysis of a colored measurement noise case , 2008, 2008 American Control Conference.

[23]  K. Jöreskog A general method for analysis of covariance structures , 1970 .

[24]  D. Bartholomew Latent Variable Models And Factor Analysis , 1987 .

[25]  Max Donath,et al.  American Control Conference , 1993 .

[26]  Torsten Söderström,et al.  Identifying Errors-in-Variables Systems By Using A Covariance Matching Approach , 2009 .

[27]  Simon Haykin,et al.  Advances in spectrum analysis and array processing , 1991 .

[28]  Torsten Söderström,et al.  Large sample properties of separable nonlinear least squares estimators , 2004, IEEE Transactions on Signal Processing.

[29]  Mats Ekman,et al.  IDENTIFICATION OF LINEAR SYSTEMS WITH ERRORS IN VARIABLES USING SEPARABLE NONLINEAR LEAST-SQUARES , 2005 .

[30]  Bonaventure Intercontinental,et al.  ON DECISION AND CONTROL , 1985 .

[31]  Wei Xing Zheng,et al.  A bias correction method for identification of linear dynamic errors-in-variables models , 2002, IEEE Trans. Autom. Control..

[32]  Magnus Mossberg,et al.  Analysis of a covariance matching method for continuous-time errors-in-variables identification , 2007, 2007 46th IEEE Conference on Decision and Control.

[33]  Wei Xing Zheng,et al.  Accuracy analysis of bias-eliminating least squares estimates for errors-in-variables systems , 2007, Autom..

[34]  T. Söderström Discrete-Time Stochastic Systems: Estimation and Control , 1995 .

[35]  W. Zheng Transfer function estimation from noisy input and output data , 1998 .

[36]  Torsten Söderström,et al.  A SEPARABLE NONLINEAR LEAST-SQUARES APPROACH FOR IDENTIFICATION OF LINEAR SYSTEMS WITH ERRORS IN VARIABLES , 2006 .

[37]  M. Mossberg Analysis of a Covariance Matching Method for Discrete-Time Errors-in-Variables Identification , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[38]  Torsten Söderström,et al.  On the use of flexural wave propagation experiments for identification of complex modulus , 2003, IEEE Trans. Control. Syst. Technol..