Learning to Use Selective Attention and Short-Term Memory in Sequential Tasks

[1]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[2]  Andrew McCallum,et al.  Reinforcement learning with selective perception and hidden state , 1996 .

[3]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[4]  J. R. Quinlan,et al.  MDL and Categorical Theories (Continued) , 1995, ICML.

[5]  Andrew W. Moore,et al.  An Introduction to Reinforcement Learning , 1995 .

[6]  Andrew McCallum,et al.  Instance-Based Utile Distinctions for Reinforcement Learning , 1995 .

[7]  Dana Ron,et al.  Learning probabilistic automata with variable memory length , 1994, COLT '94.

[8]  Andrew McCallum,et al.  Instance-Based State Identification for Reinforcement Learning , 1994, NIPS.

[9]  Andrew McCallum,et al.  Overcoming Incomplete Perception with Utile Distinction Memory , 1993, ICML.

[10]  Jing Peng,et al.  Efficient Learning and Planning Within the Dyna Framework , 1993, Adapt. Behav..

[11]  Andrew W. Moore,et al.  Memory-Based Reinforcement Learning: Efficient Computation with Prioritized Sweeping , 1992, NIPS.

[12]  A. Moore Variable Resolution Dynamic Programming , 1991, ML.

[13]  Gary L. Drescher,et al.  Made-up minds - a constructivist approach to artificial intelligence , 1991 .

[14]  David Chapman,et al.  Penguins Can Make Cake , 1989, AI Mag..

[15]  David Chapman,et al.  Pengi: An Implementation of a Theory of Activity , 1987, AAAI.

[16]  R. Bellman Dynamic programming. , 1957, Science.