Geometric Algorithm for Multiparametric Linear Programming

We propose a novel algorithm for solving multiparametric linear programming problems. Rather than visiting different bases of the associated LP tableau, we follow a geometric approach based on the direct exploration of the parameter space. The resulting algorithm has computational advantages, namely the simplicity of its implementation in a recursive form and an efficient handling of primal and dual degeneracy. Illustrative examples describe the approach throughout the paper. The algorithm is used to solve finite-time constrained optimal control problems for discrete-time linear dynamical systems.

[1]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[2]  L. Zadeh,et al.  On optimal control and linear programming , 1962 .

[3]  T. Gál,et al.  Multiparametric Linear Programming , 1972 .

[4]  J. G. Evans,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics , 1979 .

[5]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[6]  M. Schechter Polyhedral functions and multiparametric linear programming , 1987 .

[7]  T. Terlaky,et al.  The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming , 1996 .

[8]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[9]  John M. Wilson,et al.  Advances in Sensitivity Analysis and Parametric Programming , 1998, J. Oper. Res. Soc..

[10]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[11]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[12]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[13]  Alberto Bemporad,et al.  A Hybrid Approach to Traction Control , 2001, HSCC.

[14]  Alberto Bemporad,et al.  Convexity recognition of the union of polyhedra , 2001, Comput. Geom..

[15]  F. Borrelli Discrete time constrained optimal control , 2002 .

[16]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[17]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[18]  Renato D. C. Monteiro,et al.  A geometric view of parametric linear programming , 1992, Algorithmica.