Improvement of Bondability by Addition of Carboxylic Acid to the Sinter-Bonding Paste Containing Bimodal-Sized Cu Particles and Rapid Bonding in Air

[1]  K. S. Siow,et al.  Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints , 2021 .

[2]  Jong-Hyun Lee,et al.  Improved sinter-bonding properties of silver-coated copper flake paste in air by the addition of sub-micrometer silver-coated copper particles , 2020 .

[3]  L. Mills,et al.  High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticles , 2020 .

[4]  Jong-Hyun Lee,et al.  Sub-1 min Sinter-Bonding Technique in Air Using Modified Cu Dendritic Particles for Formation of a High-Temperature Sustainable Bondline , 2020, Metals and Materials International.

[5]  Chulmin Oh,et al.  Pressureless Silver Sintering of Silicon-Carbide Power Modules for Electric Vehicles , 2020, JOM.

[6]  Chulmin Oh,et al.  Low-Pressure Silver Sintering of Automobile Power Modules with a Silicon-Carbide Device and an Active-Metal-Brazed Substrate , 2019, Journal of Electronic Materials.

[7]  Yasushi Yamada,et al.  Reliability of pressure-free Cu nanoparticle joints for power electronic devices , 2019, Microelectronics Reliability.

[8]  Yang Peng,et al.  Facile Preparation of Self-Reducible Cu Nanoparticle Paste for Low Temperature Cu-Cu Bonding , 2019, JOM.

[9]  T. Shi,et al.  Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding , 2019, Journal of Alloys and Compounds.

[10]  R. Burgos,et al.  How to determine surface roughness of copper substrate for robust pressureless sintered silver in air , 2018, Materials Letters.

[11]  Yang Peng,et al.  Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles , 2018, Materials Letters.

[12]  K. Suganuma,et al.  High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device , 2018, Journal of Materials Science: Materials in Electronics.

[13]  F. Giannazzo,et al.  Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices , 2018 .

[14]  N. Frage,et al.  High-pressure spark plasma sintering of silicon nitride with LiF additive , 2017 .

[15]  Jeong-Won Yoon,et al.  Die-attach for power devices using the Ag sintering process: Interfacial microstructure and mechanical strength , 2017, Metals and Materials International.

[16]  K. Suganuma,et al.  Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres , 2017, Journal of Electronic Materials.

[17]  Jeong-Won Yoon,et al.  Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging , 2017, Journal of Materials Science: Materials in Electronics.

[18]  H. Nishikawa,et al.  Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging , 2016 .

[19]  Y. T. Lin,et al.  Identifying the Development State of Sintered Silver (Ag) as a Bonding Material in the Microelectronic Packaging Via a Patent Landscape Study , 2016 .

[20]  C. Leinenbach,et al.  Effect of Process and Service Conditions on TLP-Bonded Components with (Ag,Ni–)Sn Interlayer Combinations , 2015, Journal of Electronic Materials.

[21]  Yoshio Kobayashi,et al.  A metal-metal bonding process using metallic copper nanoparticles produced by reduction of copper oxide nanoparticles , 2014 .

[22]  Yoshio Kobayashi,et al.  Microstructure of metallic copper nanoparticles/metallic disc interface in metal–metal bonding using them , 2013 .

[23]  Tomohiro Yamakawa,et al.  Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-Temperature Bonding Using Cu Nanoparticle Paste , 2013, Journal of Electronic Materials.

[24]  Ryota Watanabe,et al.  A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding , 2012 .

[25]  Yoshio Kobayashi,et al.  Metal–metal bonding process using metallic copper nanoparticles prepared in aqueous solution , 2012 .

[26]  K. Cheong,et al.  A Review on Die Attach Materials for SiC-Based High-Temperature Power Devices , 2010 .