A mapping-independent primitive for the triangulation of parametric surfaces

This paper describes a new technique for the triangulation of parametric surfaces. Most earlier methods sample the parameter domain, and the wrong choice of parameterization can spoil the triangulation or even cause the algorithm to fail. Conversely, we use a local tessellation primitive to sample and triangulate the surface. The sampling is almost uniform and the parameterization becomes irrelevant. If sampling density or triangle shape has to be adaptive, the resulting uniform mesh can be used either as an initial coarse mesh for a refinement process, or as a fine mesh to be reduced.

[1]  Menno Kosters,et al.  Curvature-dependent parameterization of curves and surfaces , 1991, Comput. Aided Des..

[2]  Steven J. Owen,et al.  Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition , 1998, IMR.

[3]  Chandrajit L. Bajaj,et al.  Triangulation and display of rational parametric surfaces , 1994, Proceedings Visualization '94.

[4]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[5]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[6]  James F. Blinn,et al.  Scan line methods for displaying parametrically defined surfaces , 1988, CACM.

[7]  Kenneth I. Joy,et al.  Near-optimal adaptive polygonization , 1999, 1999 Proceedings Computer Graphics International.

[9]  Wayne Tiller,et al.  Geometry-based triangulation of trimmed NURBS surfaces , 1998, Comput. Aided Des..

[10]  Vasilis Vlassopoulos,et al.  Adaptive polygonization of parametric surfaces , 1990, The Visual Computer.

[11]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[12]  Marco Attene,et al.  Re-meshing techniques for topological analysis , 2001, Proceedings International Conference on Shape Modeling and Applications.

[13]  S. Z. Li Adaptive sampling and mesh generation , 1995, Comput. Aided Des..

[14]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[15]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[16]  Marco Attene,et al.  Automatic Surface Reconstruction from Point Sets in Space , 2000, Comput. Graph. Forum.

[17]  Erich Hartmann,et al.  A marching method for the triangulation of surfaces , 1998, The Visual Computer.

[18]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[19]  Luiz Velho,et al.  Optimal adaptive polygonal approximation of parametric surfaces , 1996 .

[20]  Dinesh Manocha,et al.  Interactive rendering of parametric spline surfaces , 1996 .

[21]  Jean-Christophe Cuillière An adaptive method for the automatic triangulation of 3D parametric surfaces , 1998, Comput. Aided Des..

[22]  James T. Kajiya,et al.  Ray tracing parametric patches , 1982, SIGGRAPH.

[23]  Daniel L. Toth,et al.  On ray tracing parametric surfaces , 1985, SIGGRAPH.

[24]  Kenji Shimada,et al.  Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis , 1998, Comput. Aided Geom. Des..

[25]  Bernd E. Hirsch,et al.  Triangulation of trimmed surfaces in parametric space , 1992, Comput. Aided Des..

[26]  Kenneth I. Joy,et al.  Ray tracing parametric surface patches utilizing numerical techniques and ray coherence , 1986, SIGGRAPH.

[27]  Geoff Wyvill,et al.  Mapping Independent Triangulation of Parametric Surfaces , 2002, Shape Modeling International.