Verification-based decoding for packet-based low-density parity-check codes

We introduce and analyze verification-based decoding for low-density parity-check (LDPC) codes, an approach specifically designed to manipulate data in packet-sized units. Verification-based decoding requires only linear time for both encoding and decoding and succeeds with high probability under random errors. We describe how to utilize code scrambling to extend our results to channels with errors controlled by an oblivious adversary.

[1]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[2]  Jong-Moon Chung,et al.  Theoretical analysis of the error correction performance of majority-logic-like vector symbol codes , 2001, IEEE Trans. Commun..

[3]  M. Aminshokrollahi New sequences of linear time erasure codes approaching the channel capacity , 1999 .

[4]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[5]  Jr. G. Forney,et al.  Burst-Correcting Codes for the Classic Bursty Channel , 1971 .

[6]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..

[7]  John J. Metzner Majority-logic-like decoding of vector symbols , 1996, IEEE Trans. Commun..

[8]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[9]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[10]  Michael Mitzenmacher,et al.  Analysis of random processes via And-Or tree evaluation , 1998, SODA '98.

[11]  M. Mitzenmachert Verification codes for deletions , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[12]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[13]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[14]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[15]  Michael Mitzenmacher,et al.  Accessing multiple mirror sites in parallel: using Tornado codes to speed up downloads , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[16]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[17]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[18]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[19]  D. Mackay,et al.  Low-Density Parity Check Codes over , 1998 .

[20]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[21]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[22]  Jeffrey Considine,et al.  Informed content delivery across adaptive overlay networks , 2002, IEEE/ACM Transactions on Networking.