Geometric packing under non-uniform constraints

We study the problem of discrete geometric packing. Here, given weighted regions (say in the plane) and points (with capacities), one has to pick a maximum weight subset of the regions such that no point is covered more than its capacity. We provide a general framework and an algorithm for approximating the optimal solution for packing in hypergraphs arising out of such geometric settings. Using this framework we get a flotilla of results on this problem (and also on its dual, where one wants to pick a maximum weight subset of the points when the regions have capacities). For example, for the case of fat triangles of similar size, we show an (1)-approximation and prove that no PTAS is possible. See [ehr-gpnuc-11] for the full version of the paper.

[1]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[2]  Kasturi R. Varadarajan Weighted geometric set cover via quasi-uniform sampling , 2010, STOC '10.

[3]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[4]  Kenneth L. Clarkson,et al.  On the set multi-cover problem in geometric settings , 2009, SCG '09.

[5]  Klaus Jansen,et al.  Polynomial-Time Approximation Schemes for Geometric Intersection Graphs , 2005, SIAM J. Comput..

[6]  Micha Sharir,et al.  Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes , 2010, SIAM J. Comput..

[7]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[8]  János Pach,et al.  Computing the independence number of intersection graphs , 2011, SODA '11.

[9]  Arild Stubhaug Acta Mathematica , 1886, Nature.

[10]  Miroslav Chlebík,et al.  The Complexity of Combinatorial Optimization Problems on d-Dimensional Boxes , 2007, SIAM J. Discret. Math..

[11]  Kenneth L. Clarkson,et al.  On the set multicover problem in geometric settings , 2009, TALG.

[12]  B. M. Fulk MATH , 1992 .

[13]  Micha Sharir,et al.  Improved Bounds for the Union of Locally Fat Objects in the Plane , 2014, SIAM J. Comput..

[14]  Miroslav Chlebi´k,et al.  The Complexity of Combinatorial Optimization Problems on $d$-Dimensional Boxes , 2007 .

[15]  Sariel Har-Peled,et al.  Being Fat and Friendly is Not Enough , 2009, ArXiv.

[16]  Timothy M. Chan Polynomial-time approximation schemes for packing and piercing fat objects , 2003, J. Algorithms.

[17]  Viggo Kann,et al.  Maximum Bounded 3-Dimensional Matching is MAX SNP-Complete , 1991, Inf. Process. Lett..

[18]  Parinya Chalermsook,et al.  Maximum independent set of rectangles , 2009, SODA.

[19]  Timothy M. Chan,et al.  Exact Algorithms and APX-Hardness Results for Geometric Set Cover , 2011, CCCG.

[20]  Sariel Har-Peled Geometric Approximation Algorithms , 2011 .

[21]  Micha Sharir,et al.  Improved bound for the union of fat triangles , 2011, SODA '11.

[22]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[23]  BORIS ARONOV,et al.  Small-size ε-nets for axis-parallel rectangles and boxes , 2009, STOC '09.

[24]  Aravind Srinivasan,et al.  New approaches to covering and packing problems , 2001, SODA '01.

[25]  Nabil H. Mustafa,et al.  Improved Results on Geometric Hitting Set Problems , 2010, Discret. Comput. Geom..

[26]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[27]  Tibor Csendes,et al.  New Approaches to Circle Packing in a Square - With Program Codes , 2007, Optimization and its applications.

[28]  Timothy M. Chan,et al.  Approximation Algorithms for Maximum Independent Set of Pseudo-Disks , 2009, Discrete & Computational Geometry.

[29]  Paola Cappanera A Survey on Obnoxious Facility Location Problems , 1999 .

[30]  Arie Tamir,et al.  Obnoxious Facility Location on Graphs , 1991, SIAM J. Discret. Math..

[31]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[32]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[33]  Micha Sharir,et al.  Relative (p,ε)-Approximations in Geometry , 2011, Discret. Comput. Geom..