A ug 2 01 8 GLOBAL DIMENSION FUNCTION , GEPNER EQUATIONS AND X-STABILITY CONDITIONS

We study the global dimension function gl. dim: C\StabD /Aut → R≥0 on the quotient space of Bridgeland’s stability conditions on a triangulated category D and Toda’s Gepner equation Φ(σ) = s ·σ for some σ ∈ StabD and (Φ, s) ∈ AutD×C. We show that Kajiura-Saito-Takahashi’s solution σG of τ (σ) = (−2/h) · σ, for the category of graded matrix factorization D∞(Q) = D (kQ) for a Dynkin quiver Q, gives the unique minimal value 1 − 2/h of gl. dim. Here τ is the Auslander-Reiten functor and h is the Coxeter number. Moreover, we show that, for each Lagrangian immersion L : D∞(Q) → DX(Q), the Gepner point σG in StabD∞(Q) induces a solution σ L G,s of τ L X (σ) = (−2/h)·σ in IkedaQiu’s s-fiber XStabs DX(Q) of X-stability condition on the Calabi-Yau-X category DX(Q), provided Re(s) ≥ 2− 2/h. Here XStabs DX(Q) is defined by another Gepner equation X(σ) = s ·σ and τ X = [X− 2] ◦ ζ L Q, where ζ L Q is a root of the generator of the center of the spherical twist group STX(Q).

[1]  Y. Qiu,et al.  Contractible stability spaces and faithful braid group actions , 2014, Geometry & Topology.

[2]  Y. Qiu STABILITY CONDITIONS AND QUANTUM DILOGARITHM IDENTITIES FOR DYNKIN QUIVERS , 2011, 1111.1010.

[3]  A. King,et al.  Exchange graphs and Ext quivers , 2011, 1109.2924.

[4]  Akishi Ikeda Stability conditions on $\text{CY}_N$ categories associated to $A_n$-quivers and period maps , 2014 .

[5]  Yukinobu Toda Gepner Type Stability Condition via Orlov/Kuznetsov Equivalence , 2013, 1308.3791.

[6]  M. Kontsevich,et al.  Dynamical systems and categories , 2013, 1307.8418.

[7]  Yukinobu Toda Gepner point and strong Bogomolov-Gieseker inequality for quintic 3-folds , 2013, 1305.0345.

[8]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[9]  Yukinobu Toda Gepner type stability conditions on graded matrix factorizations , 2013, 1302.6293.

[10]  Yu Qin Exchange graphs and stability conditions for quivers , 2011 .

[11]  B. Keller,et al.  Deformed Calabi–Yau completions , 2009, 0908.3499.

[12]  T. Bridgeland Stability conditions and Kleinian singularities , 2005, math/0508257.

[13]  A. Takahashi,et al.  Triangulated categories of matrix factorizations for regular systems of weights with $\epsilon=-1$ , 2007, 0708.0210.

[14]  A. Takahashi,et al.  Matrix factorizations and representations of quivers II: Type ADE case , 2005, math/0511155.

[15]  D. Orlov,et al.  Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities , 2005, math/0503632.

[16]  So Okada STABILITY MANIFOLD OF P¹ , 2005 .

[17]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[18]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[19]  Egbert Brieskorn,et al.  Artin-Gruppen und Coxeter-Gruppen , 1972 .