Interactive Model-Based Vehicle Tracking

This paper describes an interactive model-based vision system for vehicle tracking. A human specifies a limited amount of information in the form of object models, which establish a context for autonomous interpretation of scenes containing moving vehicles. Results are presented from several image sequences shot with hand-held uncalibrated cameras.

[1]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[2]  Hans-Hellmut Nagel,et al.  Model-Based Object Tracking in Traffic Scenes , 1992, ECCV.

[3]  Ernst D. Dickmanns,et al.  An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles , 1990, IEEE Trans. Syst. Man Cybern..

[4]  D.J. Kriegman,et al.  Stereo vision and navigation in buildings for mobile robots , 1989, IEEE Trans. Robotics Autom..

[5]  Thomas S. Huang,et al.  Vehicle-Type Motion Estimation From Multi-Frame Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Hans-Hellmut Nagel,et al.  Algorithmic characterization of vehicle trajectories from image sequences by motion verbs , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Ernst D. Dickmanns,et al.  Recursive 3-D Road and Relative Ego-State Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  J. Schick,et al.  Simultaneous estimation of 3D shape and motion of objects by computer vision , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[9]  Daryl T. Lawton,et al.  Translational Decomposition of Flow Fields , 1993 .

[10]  Olivier Faugeras,et al.  Maintaining representations of the environment of a mobile robot , 1988, IEEE Trans. Robotics Autom..