Homogenization of First Order Equations with (u/ϵ)-Periodic Hamiltonians Part II: Application to Dislocations Dynamics

This paper is concerned with a result of homogenization of a non-local first order Hamilton–Jacobi equation describing the dislocations dynamics. Our model for the interaction between dislocations involves both an integro-differential operator and a (local) Hamiltonian depending periodicly on u/ϵ. The first two authors studied in a previous work homogenization problems involving such local Hamiltonians. Two main ideas of this previous work are used: on the one hand, we prove an ergodicity property of this equation by constructing approximate correctors which are necessarily non periodic in space in general; on the other hand, the proof of the convergence of the solution uses here a twisted perturbed test function for a higher dimensional problem. The limit equation is a nonlinear diffusion equation involving a first order Lévy operator; the nonlinearity keeps memory of the short range interaction, while the Lévy operator keeps memory of long ones. The homogenized equation is a kind of effective plastic law for densities of dislocations moving in a single slip plane.

[1]  Guy Barles,et al.  On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations , 2000, SIAM J. Math. Anal..

[2]  Régis Monneau,et al.  Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution , 2006 .

[3]  Panagiotis E. Souganidis,et al.  Homogenization of “Viscous” Hamilton–Jacobi Equations in Stationary Ergodic Media , 2005 .

[4]  Olivier Alvarez,et al.  Résolution en temps court d'une équation de Hamilton-Jacobi non locale décrivant la dynamique d'une dislocation , 2004 .

[5]  H. Ishii Almost periodic homogenization of Hamilton-Jacobi equations , 2000 .

[6]  H. Ishii,et al.  HAMILTON-JACOBI EQUATIONS WITH PARTIAL GRADIENT AND APPLICATION TO HOMOGENIZATION , 2001 .

[7]  Sayah Awatif Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels: Partie II: Unicité Des Solutions De Viscosité , 1991 .

[8]  Régis Monneau,et al.  Homogenization of some particle systems with two-body interactions and of the dislocation dynamics , 2008 .

[9]  Régis Monneau,et al.  Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics , 2008 .

[10]  Régis Monneau,et al.  Homogenization of the dislocation dynamics and of some particle systems with two-body interactions , 2007 .

[11]  M. Bardi,et al.  Singular Perturbations of Nonlinear Degenerate Parabolic PDEs: a General Convergence Result , 2003 .

[12]  Régis Monneau,et al.  Homogenization of First-Order Equations with $$(u/\varepsilon)$$ -Periodic Hamiltonians. Part I: Local Equations , 2007 .

[13]  J. Kratochvíl Dislocations and the Meso-Macro Connection , 1996 .

[14]  Sayah Awatif,et al.  Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels , 2007 .

[15]  E. Barron,et al.  Homogenization in L , 2002 .

[16]  Panagiotis E. Souganidis,et al.  Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media , 2005 .

[17]  P. Souganidis Stochastic homogenization of Hamilton–Jacobi equations and some applications , 1999 .

[18]  E. Werner,et al.  The importance of being curved: bowing dislocations in a continuum description , 2003 .

[19]  Jean-Michel Roquejoffre,et al.  Comportement asymptotique des solutions d'quations de Hamilton-Jacobi monodimensionnelles , 1998 .

[20]  Régis Monneau,et al.  Existence and qualitative properties of multidimensional conical bistable fronts , 2005 .

[21]  L. Evans The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[22]  P. Lions,et al.  A remark on regularization in Hilbert spaces , 1986 .

[23]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[24]  Guy Barles,et al.  Space-Time Periodic Solutions and Long-Time Behavior of Solutions to Quasi-linear Parabolic Equations , 2001, SIAM J. Math. Anal..

[25]  H. Ishii,et al.  Homogenization of Hamilton-Jacobi Equations on Domains with Small Scale Periodic Structure , 1998 .

[26]  Guy Barles,et al.  Some counterexamples on the asymptotic behavior of the solutions of Hamilton–Jacobi equations , 2000 .

[27]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[28]  P. Kraikivski,et al.  E UROPHYSICS L ETTERS , 2017 .

[29]  C. Imbert A non-local regularization of first order Hamilton–Jacobi equations , 2005 .

[30]  Some homogenization results for non-coercive Hamilton–Jacobi equations , 2006, math/0605619.

[31]  E. Kröner,et al.  Kontinuumstheorie der Versetzungen und Eigenspannungen , 1958 .

[32]  O. Alvarez Homogenization of Hamilton-Jacobi Equations in Perforated Sets , 1999 .

[33]  Régis Monneau,et al.  A numerical study for the homogenisation of one-dimensional models describing the motion of dislocations , 2008, Int. J. Comput. Sci. Math..

[34]  István Groma,et al.  Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation , 1999 .

[35]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[36]  L. Evans Periodic homogenisation of certain fully nonlinear partial differential equations , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  A. Fathi Sur la convergence du semi-groupe de Lax-Oleinik , 1998 .

[38]  Michael Zaiser,et al.  Spatial Correlations and Higher-Order Gradient Terms in a Continuum Description of Dislocation Dynamics , 2003 .

[39]  H. Ishii Homogenization of the Cauchy Problem for Hamilton-Jacobi Equations , 1999 .