Bounds on Harary index

In this paper, we obtain the lower and upper bounds on the Harary index of a connected graph (molecular graph), and, in particular, of a triangle- and quadrangle-free graphs in terms of the number of vertices, the number of edges and the diameter. We give the Nordhaus–Gaddum-type result for Harary index using the diameters of the graph and its complement. Moreover, we compare Harary index and reciprocal complementary Wiener number for graphs.

[1]  Nenad Trinajstić,et al.  Harary Index - Twelve Years Later* , 2002 .

[2]  Xiaochun Cai,et al.  On reciprocal complementary Wiener number , 2009, Discret. Appl. Math..

[3]  N. Trinajstic Chemical Graph Theory , 1992 .

[4]  Bo Zhou,et al.  New upper bounds on Zagreb indices , 2009 .

[5]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[6]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[7]  Bo Zhou,et al.  On Harary index , 2008 .

[8]  Zlatko Mihalić,et al.  A graph-theoretical approach to structure-property relationships , 1992 .

[9]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[10]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[11]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[12]  Mircea V. Diudea,et al.  Indices of Reciprocal Properties or Harary Indices , 1997, J. Chem. Inf. Comput. Sci..

[13]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[14]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[15]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[16]  Ovidiu Ivanciuc,et al.  Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices , 1993 .

[17]  Ovidiu Ivanciuc,et al.  QSAR Comparative Study of Wiener Descriptors for Weighted Molecular Graphs , 2000, J. Chem. Inf. Comput. Sci..

[18]  S C Basak,et al.  Distance Indices and Their Hyper-Counterparts: Intercorrelation and Use in the Structure-Property Modeling , 2001, SAR and QSAR in environmental research.

[19]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[20]  Ovidiu Ivanciuc,et al.  Design of Topological Indices. Part 10.1 Parameters Based on Electronegativity and Covalent Radius for the Computation of Molecular Graph Descriptors for Heteroatom-Containing Molecules , 1998, J. Chem. Inf. Comput. Sci..

[21]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.