The origins of kriging

In this article, kriging is equated with spatial optimal linear prediction, where the unknown random-process mean is estimated with the best linear unbiased estimator. This allows early appearances of (spatial) prediction techniques to be assessed in terms of how close they came to kriging.

[1]  H. F. Smith,et al.  A DISCRIMINANT FUNCTION FOR PLANT SELECTION , 1936 .

[2]  L. N. Hazel The Genetic Basis for Constructing Selection Indexes. , 1943, Genetics.

[3]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[4]  M. Kendall,et al.  A Study in the Analysis of Stationary Time-Series. , 1955 .

[5]  P. D. Thompson Optimum Smoothing of Two-Dimensional Fields , 1956 .

[6]  A. Yaglom Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .

[7]  D. G. Krige,et al.  Effective pay limits for selective mining , 1962 .

[8]  A. N. Kolmogorov,et al.  Interpolation and extrapolation of stationary random sequences. , 1962 .

[9]  D. G. Krige Economic aspects of stoping through unpayable ore , 1962 .

[10]  A. Goldberger Best Linear Unbiased Prediction in the Generalized Linear Regression Model , 1962 .

[11]  G. Matheron Principles of geostatistics , 1963 .

[12]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[13]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[14]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[15]  D. G. Krige,et al.  Lognormal-de Wijsian geostatistics for ore evaluation , 1978 .

[16]  Stephen M. Stigler,et al.  STIGLER'S LAW OF EPONYMY† , 1980 .

[17]  P. Whittle Prediction and Regulation by Linear Least-Square Methods , 1983 .

[18]  Analytical Solution for Punctual Kriging in one Dimension , 1987 .

[19]  N. Cressie,et al.  Statistics for Spatial Data. , 1992 .

[20]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.