Probing structural changes and preparation of protein domains by limited proteolysis

[1]  E. M. Brown,et al.  Three-dimensional molecular modeling of bovine caseins: alpha s1-casein. , 1991, Journal of dairy science.

[2]  B. Manjula,et al.  Domain structure and molecular flexibility of streptococcal M proteinIn Situ probed by limited proteolysis , 1990, Journal of protein chemistry.

[3]  H. Swaisgood,et al.  Analysis of ligand binding and β-lactoglobulin denaturation by chromatography on immobilized trans-retinal , 1990 .

[4]  M. Desmadril,et al.  Detection of intermediates in the unfolding transition of phosphoglycerate kinase using limited proteolysis. , 1989, Biochemistry.

[5]  C. Klee,et al.  Functional domain structure of calcineurin A: mapping by limited proteolysis. , 1989, Biochemistry.

[6]  H. Swaisgood,et al.  Immobilized Enzymes as Processing Aids or Analytical Tools , 1989 .

[7]  H. Swaisgood Structural Changes in Milk Proteins , 1989 .

[8]  L. Chaplin,et al.  The secondary structure of peptides derived from caseins: a circular dichroism study. , 1988, Biochimica et biophysica acta.

[9]  N. Kitabatake,et al.  Limited proteolysis of ovalbumin by pepsin , 1988 .

[10]  L. Fahien,et al.  Proteolysis as a probe of ligand-associated conformational changes in rat carbamyl phosphate synthetase I. , 1988, Archives of biochemistry and biophysics.

[11]  J. Kinsella,et al.  Enzymic modification of proteins: effects of transglutaminase cross-linking on some physical properties of .beta.-lactoglobulin , 1988 .

[12]  B. Trus,et al.  Conformational characteristics of the complete cequence of group A streptococcal M6 protein , 1988, Proteins.

[13]  M. Bolognesi,et al.  Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2.5 A resolution. , 1987, Journal of molecular biology.

[14]  H. Swaisgood,et al.  Use of immobilized proteinases and peptidases to study structural changes in proteins. , 1987, Methods in enzymology.

[15]  P. Kraulis,et al.  The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein , 1986, Nature.

[16]  S. Kaminogawa,et al.  Functional Properties of a Peptide of 23 Residues Purified from the Peptic Hydrolyzate of asl‐CASEIN: Changes in the Emulsifying Activity During Purification of the Peptide , 1986 .

[17]  K. Titani,et al.  Limited proteolysis of human von Willebrand factor by Staphylococcus aureus V-8 protease: isolation and partial characterization of a platelet-binding domain. , 1986, Biochemistry.

[18]  M. Zamai,et al.  Correlation between sites of limited proteolysis and segmental mobility in thermolysin. , 1986, Biochemistry.

[19]  M. Motoki,et al.  Gelation of casein and soybean globulins by transglutaminase , 1985 .

[20]  H. Ueno Local structural changes in tropomyosin detected by a trypsin-probe method. , 1984, Biochemistry.

[21]  L. Kurth,et al.  Transglutaminase Catalyzed Cross-Linking of Myosin to Soya Protein, Casein and Gluten , 1984 .

[22]  H. Swaisgood,et al.  Characterization of an immobilized digestive enzyme system for determination of protein digestibility , 1984 .

[23]  H. Ueno,et al.  An enzyme-probe method to detect structural changes in the myosin rod. , 1984, Journal of molecular biology.

[24]  A. McLachlan Structural implications of the myosin amino acid sequence. , 1984, Annual review of biophysics and bioengineering.

[25]  A. di Pietro,et al.  Use of trypsin to monitor conformational changes of mitochondrial adenosinetriphosphatase induced by nucleotides and phosphate. , 1983, Biochemistry.

[26]  G. C. Cheeseman,et al.  Developments in dairy chemistry—1: Edited by P. F. Fox. Applied Science Publishers Ltd, London, 1982. 409 pp. Price: £44.00 , 1983 .

[27]  F. Church,et al.  Use of immobilized Streptomyces griseus proteases (pronase) as a probe of structural transitions of lysozyme, β-lactoglobulin and casein , 1982 .

[28]  F. Church,et al.  Urea denaturation of the immobilized proteases of Streptomyces griseus (pronase) , 1982 .

[29]  H. Zoerb,et al.  Surface Hydrophobicity of αs1 -I, αs1 -Casein A and B and Its Implications in Cheese Structure , 1982 .

[30]  M. Wilchek,et al.  Mechanism of activation of Sepharose and Sephadex by cyanogen bromide , 1982 .

[31]  H. Swaisgood,et al.  Analysis and optimization of methods using water‐soluble carbodiimide for immobilization of biochemicals to porous glass , 1982, Biotechnology and bioengineering.

[32]  S. Kaminogawa,et al.  Calcium Insensitivity and Other Properties of αs1 -I Casein , 1980 .

[33]  W. Eigel Formation of γ1-A2, γ2-A2 AND γ3-A caseins by In vitro proteolysis of β-CASEIN A2 with bovine plasmin , 1977 .

[34]  K. Mosbach,et al.  Covalently bound glutamate dehydrogenase for studies of subunit association and allosteric regulation. , 1976, Methods in enzymology.

[35]  H. Scheraga,et al.  Immobilized carboxypeptidase A as a probe for studying the thermally induced unfolding of bovine pancreatic ribonuclease. , 1975, Biochemistry.

[36]  E. Blout,et al.  Conformational changes in aspartate transcarbamylase. II. Circular dichroism evidence for the involvement of metal ions in allosteric interactions. , 1973, The Journal of biological chemistry.

[37]  G. Matthyssens,et al.  Study of the thermal-denaturation mechanism of hen egg-white lysozyme through proteolytic degradation. , 1972, European journal of biochemistry.

[38]  Elemer Mihalyi,et al.  Application of proteolytic enzymes to protein structure studies , 1972 .

[39]  G. Markus,et al.  Conformational changes in aspartate transcarbamylase. I. Proteolysis of the intact enzyme. , 1968, The Journal of biological chemistry.

[40]  J. A. Rupley [90] Susceptibility to attack by proteolytic enzymes , 1967 .