Abstract. Time domain simulations for high-frequency applications are widely dominated by the leapfrog timeintegration scheme. Especially in combination with the spatial discretization approach of the Finite Integration Technique (FIT) it leads to a highly efficient explicit simulation method, which in the special case of Cartesian grids can be regarded to be computationally equivalent to the Finite Difference Time Domain (FDTD) algorithm. For stability reasons, however, the leapfrog method is restricted to a maximum stable time step by the well-known Courantcriterion, and can not be applied to most low-frequency applications. Recently, some alternative, unconditionally stable techniques have been proposed to overcome this limitation, including the Alternating Direction Implicit (ADI)-method. We analyze such schemes using a transient modal decomposition of the electric fields. It is shown that stability alone is not sufficient to guarantee correct results, but additionally important conservation properties have to be met. Das Leapfrog-Verfahren ist ein weit verbreitetes Zeitintegrationsverfahren fur transiente hochfrequente elektrodynamischer Felder. Kombiniert mit dem raumlichen Diskretisierungsansatz der Methode der Finiten Integration (FIT) fuhrt es zu einer sehr effizienten, expliziten Simulationsmethode, die im speziellen Fall kartesischer Rechengitter als aquivalent zur Finite Difference Time Domain (FDTD) Methode anzusehen ist. Aus Stabilitatsgrunden ist dabei die Zeitschrittweite durch das bekannte Courant-Kriterium begrenzt, so dass das Leapfrog- Verfahren fur niederfrequente Probleme nicht sinnvoll angewendet werden kann. In den letzten Jahren wurden alternativ einige andere explizite oder “halb-implizite" Zeitbereichsverfahren vorgeschlagen, u.a. das “Alternating Direction Implicit" (ADI)-Verfahren, die keiner Beschrankung des Zeitschritts aus Stabilitatsgrunden unterliegen. Es zeigt sich aber, dass auch diese Methoden im niederfrequenten Fall nicht zu sinnvollen Simulationsergebnissen fuhren. Wie anhand einer transienten Modalanalyse der elektrischen Felder in einem einfachen 2D-Beispiel deutlich wird, ist die Ursache dafur die Verletzung wichtiger physikalischer Erhaltungseigenschaften durch ADI und verwandte Methoden.
[1]
T. Weiland.
A discretization model for the solution of Maxwell's equations for six-component fields
,
1977
.
[2]
Tae-Woo Lee,et al.
On the accuracy of the ADI-FDTD method
,
2002,
IEEE Antennas and Wireless Propagation Letters.
[3]
Hans De Raedt,et al.
New Unconditionally Stable Algorithms to Solve the Time-Dependent Maxwell Equations
,
2002,
International Conference on Computational Science.
[4]
T. Weiland,et al.
Dispersion and asymmetry effects of ADI-FDTD
,
2002,
IEEE Microwave and Wireless Components Letters.
[5]
T. Weiland.
Time Domain Electromagnetic Field Computation with Finite Difference Methods
,
1996
.
[6]
K. Yee.
Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media
,
1966
.
[7]
Rolf Schuhmann,et al.
Conservation of Discrete Energy and Related Laws in the Finite Integration Technique
,
2001
.
[8]
J. S. Kole,et al.
Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations.
,
2001,
physics/0112069.
[9]
T. Namiki.
3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell's equations
,
2000
.
[10]
Ieee Microwave Theory,et al.
IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society
,
2001
.