A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples

A new test of hypothesis for classifying stationary time series based on the bias-adjusted estimators of the fitted autoregressive model is proposed. It is shown theoretically that the proposed test has desirable properties. Simulation results show that when time series are short, the size and power estimates of the proposed test are reasonably good, and thus this test is reliable in discriminating between short-length time series. As the length of the time series increases, the performance of the proposed test improves, but the benefit of bias-adjustment reduces. The proposed hypothesis test is applied to two real data sets: the annual real GDP per capita of six European countries, and quarterly real GDP per capita of five European countries. The application results demonstrate that the proposed test displays reasonably good performance in classifying relatively short time series.

[1]  Marcel Ausloos,et al.  Correlation measure to detect time series distances, whence economy globalization , 2008 .

[2]  Luca Scrucca,et al.  Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression , 2007, Comput. Stat. Data Anal..

[3]  Elizabeth Ann Maharaj,et al.  Time-Series Clustering , 2015 .

[4]  Elizabeth Ann Maharaj,et al.  Comparison of time series using subsampling , 2005, Comput. Stat. Data Anal..

[5]  George Casella,et al.  Assessing agreement of clustering methods with gene expression microarray data , 2008, Comput. Stat. Data Anal..

[6]  D. Piccolo A DISTANCE MEASURE FOR CLASSIFYING ARIMA MODELS , 1990 .

[7]  Sandra Paterlini,et al.  Clustering financial time series: an application to mutual funds style analysis , 2004, Comput. Stat. Data Anal..

[8]  Bias reduction in autoregressive models , 2000 .

[9]  Elizabeth Ann Maharaj,et al.  Cluster of Time Series , 2000, J. Classif..

[10]  Pierpaolo D’Urso,et al.  Autocorrelation-based fuzzy clustering of time series , 2009, Fuzzy Sets Syst..

[11]  José M. Tribolet,et al.  Statistical properties of an LPC distance measure , 1979, ICASSP.

[12]  José Antonio Vilar,et al.  Non-linear time series clustering based on non-parametric forecast densities , 2010, Comput. Stat. Data Anal..

[13]  Sunghoon Kwon,et al.  Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data , 2006, Comput. Stat. Data Anal..

[14]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[15]  Elizabeth Ann Maharaj,et al.  Discrimination of locally stationary time series using wavelets , 2007, Comput. Stat. Data Anal..

[16]  Gabriel Huerta,et al.  Multivariate time series modeling and classification via hierarchical VAR mixtures , 2006, Comput. Stat. Data Anal..

[17]  Robert A. Stine,et al.  The Bias of Autoregressive Coefficient Estimators , 1988 .

[18]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[19]  R. J. Alcock Time-Series Similarity Queries Employing a Feature-Based Approach , 1999 .

[20]  M. Ausloos,et al.  Clusters or networks of economies? A macroeconomy study through Gross Domestic Product , 2007 .

[21]  Lynne Billard,et al.  Large-sample tests of homogeneity for time series models , 1984 .

[22]  Edoardo Otranto Clustering heteroskedastic time series by model-based procedures , 2008, Comput. Stat. Data Anal..

[23]  J. R. Berrendero,et al.  Time series clustering based on forecast densities , 2006, Comput. Stat. Data Anal..

[24]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[25]  Ahlame Douzal Chouakria,et al.  Adaptive clustering for time series: Application for identifying cell cycle expressed genes , 2009, Comput. Stat. Data Anal..

[26]  P. V. de Souza,et al.  LPC distance measures and statistical tests with particular reference to the likelihood ratio , 1982 .

[27]  Robert A. Stine,et al.  A fixed point characterization for bias of autoregressive estimators , 1989 .

[28]  J. Alagón SPECTRAL DISCRIMINATION FOR TWO GROUPS OF TIME SERIES , 1989 .

[29]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[30]  Silvano Cincotti,et al.  Clustering of financial time series with application to index and enhanced index tracking portfolio , 2005 .

[31]  Maria Macchiato,et al.  Time modelling and spatial clustering of daily ambient temperature: An application in Southern Italy , 1995 .

[32]  T. Cipra Statistical Analysis of Time Series , 2010 .

[33]  Jae H. Kim Bootstrap prediction intervals for autoregression using asymptotically mean-unbiased estimators , 2004 .

[34]  Elizabeth Ann Maharaj,et al.  A coherence-based approach for the pattern recognition of time series , 2010 .

[35]  T. W. Anderson Goodness of Fit Tests for Spectral Distributions , 1993 .

[36]  Insuk Sohn,et al.  Classification of gene functions using support vector machine for time-course gene expression data , 2008, Comput. Stat. Data Anal..

[37]  Herbert S. Winokur,et al.  First Order Autoregression: Inference, Estimation, and Prediction , 1969 .

[38]  Paul S. P. Cowpertwait,et al.  Clustering population means under heterogeneity of variance with an application to a rainfall time series problem , 1992 .

[39]  T. Kuo,et al.  The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition. , 1995, IEEE transactions on bio-medical engineering.

[40]  Faming Liang,et al.  Use of SVD-based probit transformation in clustering gene expression profiles , 2007, Comput. Stat. Data Anal..

[41]  F. H. C. Marriott,et al.  BIAS IN THE ESTIMATION OF AUTOCORRELATIONS , 1954 .

[42]  G. R. Dargahi-Noubary,et al.  Disoominkfrcn between gaussian time series based on their spectral differences , 1992 .

[43]  Elizabeth Ann Maharaj,et al.  A SIGNIFICANCE TEST FOR CLASSIFYING ARMA MODELS , 1996 .

[44]  Roberto Bellotti,et al.  Clustering stock market companies via chaotic map synchronization , 2005 .

[45]  Robert H. Shumway,et al.  Discrimination and Clustering for Multivariate Time Series , 1998 .

[46]  A. Zellner An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .

[47]  Shen Liu,et al.  Beyond point forecasting: evaluation of alternative prediction intervals for tourist arrivals , 2011 .

[48]  Dit-Yan Yeung,et al.  Time series clustering with ARMA mixtures , 2004, Pattern Recognit..

[49]  Marcella Corduas,et al.  Time series clustering and classification by the autoregressive metric , 2008, Comput. Stat. Data Anal..

[50]  Jorge Caiado,et al.  A periodogram-based metric for time series classification , 2006, Comput. Stat. Data Anal..