Characterization of canopy fuels using ICESat/GLAS data

article i nfo This study aimed to estimate canopy fuel properties relevant for crown fire behavior using ICESat/GLAS sat- ellite LiDAR data. GLAS estimates were compared to canopy fuel products generated from airborne LiDAR data, which had been previously validated against field data. The geolocation accuracy of the data was eval- uated by comparing ground elevation on both datasets, showing an offset of 1 pixel (20 m). Canopy cover (CC) was estimated as the ratio of the canopy energy to the total energy of the waveform. Application of a canopy base height threshold (CBH) to compute the canopy energy increased the accuracy of CC estimates (R 2 =0.89; RMSE=16.12%) and yielded a linear relationship with airborne LiDAR estimates. In addition, bet- ter agreement was obtained when the CC derived from airborne LiDAR data was estimated using the intensity of the returns. An empirical model, based on the CC and the leading edge (LE), was derived to estimate leaf area index (LAI) using stepwise regression providing good agreement with the reference data (R 2 =0.9,

[1]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[2]  Lori A. Magruder,et al.  Landcover classification of small-footprint, full-waveform lidar data , 2009 .

[3]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[4]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[5]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[6]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[7]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[8]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[9]  Norbert Pfeifer,et al.  Icesat full waveform altimetry compared to airborne laser altimetry over the Netherlands , 2007 .

[10]  Amy L. Neuenschwander,et al.  Predicting southeastern forest canopy heights and fire fuel models using GLAS data , 2010 .

[11]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[12]  Håkan Olsson,et al.  Simulating the effects of lidar scanning angle for estimation of mean tree height and canopy closure , 2003 .

[13]  Wenge Ni-Meister,et al.  Modeling lidar waveforms in heterogeneous and discrete canopies , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  S. Popescu,et al.  Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level , 2011 .

[15]  R. Oren,et al.  Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area , 1998 .

[16]  Kenji Omasa,et al.  Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Yong Pang,et al.  Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .

[18]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[19]  David J. Harding,et al.  SRTM C-band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief , 2006 .

[20]  Robert E. Keane,et al.  Estimating forest canopy bulk density using six indirect methods , 2005 .

[21]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[22]  J. Bryan Blair,et al.  Decomposition of laser altimeter waveforms , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  M IoannisD.,et al.  Canopy fuel characteristics and potential crown fire behavior in Aleppo pine ( Pinus halepensis Mill . ) forests , 2007 .

[24]  R. Rothermel,et al.  Modeling moisture content of fine dead wildland fuels input into the BEHAVE fire prediction system , 1986 .

[25]  S. Ustin,et al.  Generation of crown bulk density for Pinus sylvestris L. from lidar , 2004 .

[26]  R. Macarthur,et al.  Foliage Profile by Vertical Measurements , 1969 .

[27]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[28]  Qi Chen Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry , 2010 .

[29]  Erik Næsset,et al.  Mapping LAI in a Norway spruce forest using airborne laser scanning , 2009 .

[30]  Emilio Chuvieco,et al.  Fuel loads and fuel types , 2003 .

[31]  J. D. Tarpley,et al.  SATELLITE-DERIVED PM 2 . 5 EMISSIONS FROM WILDFIRES FOR AIR QULAITY FORECAST , 2006 .

[32]  C. Willmott Some Comments on the Evaluation of Model Performance , 1982 .

[33]  A. Neuenschwander,et al.  Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping , 2008 .

[34]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[35]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[36]  Junjie Zhang,et al.  An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[37]  Cristina Milesi,et al.  User's Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm , 2003 .

[38]  Robert E. Keane,et al.  Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA , 1998 .

[39]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[40]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[41]  David J. Harding,et al.  Correction to “Estimates of forest canopy height and aboveground biomass using ICESat” , 2006 .

[42]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[43]  R. Dubayah,et al.  Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .

[44]  Ross Nelson,et al.  Model effects on GLAS-based regional estimates of forest biomass and carbon , 2010 .

[45]  John D. Aber,et al.  FOLIAGE-HEIGHT PROFILES AND SUCCESSION IN NORTHERN HARDWOOD FORESTS' , 1979 .

[46]  H. Zwally ICESat's Laser Measurements of Polar Ice and Atmospheres , 2003 .

[47]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[48]  Roger D. Ottmar,et al.  Characterizing fuels in the 21st Century , 2001 .

[49]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[50]  Donald C. E. Robinson,et al.  An Introduction to the Fire and Fuels Extension to FVS , 1997 .

[51]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[52]  Shobha Kondragunta,et al.  Estimating forest biomass in the USA using generalized allometric models and MODIS land products , 2006 .

[53]  Charles H. Wick,et al.  A method of evaluating crown fuels in forest stands. , 1972 .

[54]  Joe H. Scott,et al.  Effects of alternative treatments on canopy fuel characteristics in five conifer stands , 2007 .

[55]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[56]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[57]  Birgit Peterson Canopy Fuels Inventory and Mapping Using Large-Footprint Lidar , 2005 .

[58]  Kaiguang Zhao,et al.  Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA , 2009 .

[59]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[60]  Kevin C. Ryan,et al.  Spatial fuel data products of the LANDFIRE Project , 2009 .

[61]  Norbert Pfeifer,et al.  ICESat Full-Waveform Altimetry Compared to Airborne Laser Scanning Altimetry Over The Netherlands , 2009, IEEE Transactions on Geoscience and Remote Sensing.