Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps

We present an estimation of the point source (PS) catalogue that could be extracted from the forthcoming ESA Planck mission data. We have applied the Spherical Mexican Hat Wavelet (SMHW) to simulated all-sky maps that include CMB, Galactic emission (thermal dust, free-free and synchrotron), thermal Sunyaev-Zel’dovich effect and PS emission, as well as instrumental white noise . This work is an extension of the one presented in Vielva et al. (2001a). We have developed an algorithm focused on a fast local optimal scale determination, that is crucial to achieve a PS catalogue with a large number of detections and a low flux limit. An important effort has been also done to reduce the CPU time processor for spherical harmonic transformation, in order to perform the PS detection in a reasonable time. The presented algorithm is able to provide a PS catalogue above fluxes: 0.48 Jy (857 GHz), 0.49 Jy (545 GHz), 0.18 Jy (353 GHz), 0.12 Jy (217 GHz), 0.13 Jy (143 GHz), 0.16 Jy (100 GHz HFI), 0.19 Jy (100 GHz LFI), 0.24 Jy (70 GHz), 0.25 Jy (44 GHz) and 0.23 Jy (30 GHz). We detect around 27700 PS at the highest frequency Planck channel and 2900 at the 30 GHz one. The completeness level are: 70% (857 GHz), 75% (545 GHz), 70% (353 GHz), 80% (217 GHz), 90% (143 GHz), 85% (100 GHz HFI), 80% (100 GHz LFI), 80% (70 GHz), 85% (44 GHz) and 80% (30 GHz). In addition, we can find several PS at different channels, allowing the study of the spectral behaviour and the physical processes acting on them. We also present the basic procedure to apply the method in maps convolved with asymmetric beams. The algorithm takes � 72 hours for the most CPU time demanding channel (857 GHz) in a Compaq HPC320 (Alpha EV68 1 GHz processor) and requires 4 GB of RAM memory; the CPU time goes as O(NRoNpix 3/2 log(Npix)), where Npix is the number of pixels in the map and NRo is the number of optimal scales needed.

[1]  L. Toffolatti,et al.  Combining maximum-entropy and the Mexican hat wavelet to reconstruct the microwave sky , 2001 .

[2]  M. P. Hobson,et al.  Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency CMB maps , 2002 .

[3]  G. Zotti,et al.  All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA) , 2001, astro-ph/0108362.

[4]  C. Baccigalupi,et al.  Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps , 2000, astro-ph/0002257.

[5]  M. Hobson,et al.  A Bayesian approach to discrete object detection in astronomical data sets , 2002, astro-ph/0204457.

[6]  R. B. Barreiro,et al.  The effect of point sources on satellite observations of the cosmic microwave background , 1998, astro-ph/9810241.

[7]  Michael E. Jones,et al.  First results from the Very Small Array — II. Observations of the cosmic microwave background , 2002, astro-ph/0205381.

[8]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[9]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[10]  M. Pérault,et al.  Diffuse infrared emission from the galaxy. I: Solar neighborhood , 1988 .

[11]  Christopher R. Genovese,et al.  A New Source Detection Algorithm Using the False-Discovery Rate , 2001, astro-ph/0110570.

[12]  Michael P. Hobson,et al.  Analysis of cosmic microwave background data on an incomplete sky , 2002 .

[13]  D. Herranz,et al.  Optimal Detection of Sources on a Homogeneous and Isotropic Background , 2001, astro-ph/0107384.

[14]  M. Hobson,et al.  All-sky component separation for the Planck mission , 2001, astro-ph/0105432.

[15]  A. Lasenby,et al.  Foreground separation methods for satellite observations of the cosmic microwave background , 1998, astro-ph/9806387.

[16]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[17]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[18]  Cambridge,et al.  Scale-adaptive Filters for the Detection/Separation of Compact Sources , 2002, astro-ph/0204149.

[19]  L. Toffolatti,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1998 .

[20]  L. Toffolatti,et al.  Predicted Planck extragalactic point-source catalogue , 2001, astro-ph/0104077.

[21]  Richard Gispert,et al.  Foregrounds and CMB experiments: I. Semi-analytical estimates of contamination , 1999 .

[22]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[23]  L. Toffolatti,et al.  Isotropic Wavelets : a Powerful Tool to Extract Point Sources from CMB Maps , 1999 .

[24]  D. Herranz,et al.  Point source detection and extraction from simulated Planck time-ordered data using optimal adaptive filters , 2002 .

[25]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[26]  P. Vielva,et al.  A Bayesian non-parametric method to detect clusters in Planck data , 2002 .

[27]  The physics of microwave background anisotropies , 1995, Nature.

[28]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[29]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[30]  J. Silk,et al.  Constraining our Universe with X-ray and optical cluster data , 2000, astro-ph/0009042.

[31]  G. Giardino,et al.  Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: A re-analysis of the Parkes data , 2002, astro-ph/0202520.

[32]  Pierre Vandergheynst,et al.  Wavelets on the n-sphere and related manifolds , 1998 .

[33]  F. Argueso,et al.  The performance of spherical wavelets to detect non‐Gaussianity in the cosmic microwave background sky , 2002 .

[34]  R. B. Barreiro,et al.  Isotropic wavelets: a powerful tool to extract point sources from cosmic microwave background maps , 1999, astro-ph/9912471.

[35]  George D. Nicolson,et al.  The Rhodes/HartRAO 2326‐MHz radio continuum survey , 1998 .

[36]  Max Tegmark,et al.  Removing Point Sources from Cosmic Microwave Background Maps , 1998 .

[37]  J. Silk,et al.  A combined multifrequency map for point source subtraction , 2001, astro-ph/0111168.

[38]  S. Masi,et al.  Cosmological constraints from archeops , 2002, astro-ph/0210306.

[39]  H. E. Jorgensen,et al.  An adaptive filter for the construction of the Planck Compact Source Catalogue , 2002 .

[40]  J. E. Carlstrom,et al.  Degree Angular Scale Interferometer First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum , 2001 .

[41]  A. J. Banday,et al.  Spherical Mexican hat wavelet: an application to detect non-Gaussianity in the COBE-DMR maps , 2001 .

[42]  R. B. Barreiro,et al.  Comparing filters for the detection of point sources , 2003, astro-ph/0302245.