Topological basis associated with B–M–W algebra: Two-spin-1/2 realization

Abstract In this letter, we study the two-spin-1/2 realization for the Birman–Murakami–Wenzl (B–M–W) algebra and the corresponding Yang–Baxter R ˘ ( θ , ϕ ) matrix. Based on the two-spin-1/2 realization for the B–M–W algebra, the three-dimensional topological space, which is spanned by topological basis, is investigated. By means of such topological basis realization, the four-dimensional Yang–Baxter R ˘ ( θ , ϕ ) can be reduced to Wigner D J function with J = 1 . The entanglement and Berry phase in the spectral parameter space are also explored. The results show that one can obtain a set of entangled basis via Yang–Baxter R ˘ ( θ , ϕ ) matrix acting on the standard basis, and the entanglement degree is maximum when the R ˘ i ( θ , ϕ ) turns to the braiding operator.

[1]  Kang Xue,et al.  The role of the ℓ1-norm in quantum information theory and two types of the Yang–Baxter equation , 2011 .

[2]  Chao Zheng,et al.  Direct experimental simulation of the Yang–Baxter equation , 2013, 1305.6086.

[3]  Z. Nagy,et al.  Symmetries of spin systems and Birman–Wenzl–Murakami algebra , 2009, 0910.4036.

[4]  Michael H. Freedman,et al.  The Two-Eigenvalue Problem and Density¶of Jones Representation of Braid Groups , 2002 .

[5]  K. Murasugi,et al.  The braid group , 1999 .

[6]  Bethe ansatz for the Temperley-Lieb spin-chain with integrable open boundaries , 2012, 1210.7235.

[7]  E. I. Duzzioni,et al.  Spin coherent states in NMR quadrupolar system: experimental and theoretical applications , 2013, 1301.2862.

[8]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[9]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[10]  Louis H. Kauffman,et al.  Braiding operators are universal quantum gates , 2004, quant-ph/0401090.

[11]  Kang Xue,et al.  Braiding transformation, entanglement swapping, and Berry phase in entanglement space , 2007, 0704.0709.

[12]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[13]  THE EUROPEAN PHYSICAL JOURNAL D Quantum synchronization , 2006 .

[14]  V. Korepin,et al.  The inverse scattering method approach to the quantum Shabat-Mikhailov model , 1981 .

[15]  Eric C. Rowell,et al.  Localization of Unitary Braid Group Representations , 2010, 1009.0241.

[16]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  C. Yang,et al.  Braid Group Knot Theory and Statistical Mechanics , 1989 .

[18]  Thermal and magnetic properties of integrable spin-1 and spin- 3 / 2 chains with applications to real compounds , 2004, cond-mat/0409311.

[19]  R. Baxter Partition function of the eight vertex lattice model , 1972 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Proceedings of the Royal Society (London) , 1906, Science.

[22]  J. Hietarinta,et al.  Integrable quantum field theories , 1982 .

[23]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  H. Wenzl Quantum groups and subfactors of type B, C, and D , 1990 .

[25]  Kang Xue,et al.  Yang-Baxterization of braid group representations , 1991 .

[26]  Kang Xue,et al.  Optical simulation of the Yang-Baxter equation , 2007, 0711.4703.

[27]  Z. Nagy,et al.  Jordanian deformation of the open XXX spin chain , 2009, 0911.5592.

[28]  Michio Jimbo QuantumR matrix for the generalized Toda system , 1986 .

[29]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[30]  Vaughan F. R. Jones,et al.  On a certain value of the Kauffman polynomial , 1989 .

[31]  Kang Xue,et al.  Yang-Baxter Equations in Quantum Information , 2012 .

[32]  Mauro Spera,et al.  On Uncertainty, Braiding and Entanglement in Geometric Quantum Mechanics , 2006 .

[33]  Jun Murakami The Kauffman polynomial of links and representation theory , 1987 .

[34]  Journal of the Optical Society of America , 1950, Nature.

[35]  Chengcheng Zhou,et al.  The topological basis realization and the corresponding XXX spin chain , 2011 .

[36]  Quantum entanglement, unitary braid representation and Temperley-Lieb algebra , 2010, 1011.6229.

[37]  Joan S. Birman,et al.  Braids, link polynomials and a new algebra , 1989 .

[38]  A. Kluemper,et al.  Quantum spin chains of Temperley–Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature , 2010, 1003.1932.