Effect of Nb2O5 on MgH2 properties during mechanical milling

Abstract Recently, it was shown that hydrogen absorption–desorption kinetics in magnesium were improved by milling magnesium hydride (MgH2) with transition metal oxides. Herein, we investigate the role of the most effective of these oxides, Nb2O5 when added in larger volume fraction. The effect of Nb2O5 on magnesium crystalline structure, particle size and (ab)desorption properties has been characterised. Moreover, we report that pure MgH2 can also show fast hydrogen sorption kinetics after a long milling time. The effects of Nb2O5 on MgH2 sorption properties are rationalised in a new approach considering Nb2O5 as a dispersing agent, which helps reduce MgH2 particle size during milling.

[1]  Klaus Schlichte,et al.  Thermodynamic investigation of the magnesium–hydrogen system , 1999 .

[2]  R. Schulz,et al.  Hydrogen absorption properties of a mechanically milled Mg–50 wt.% LaNi5 composite , 1998 .

[3]  A. Pedersen,et al.  Formation and decomposition of magnesium hydride , 1983 .

[4]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[5]  F. Castro,et al.  Hydrogen sorption properties of an Mg + WO3 mixture made by reactive mechanical alloying , 2004 .

[6]  F. Cansell,et al.  Addition of nanosized Cr2O3 to magnesium for improvement of the hydrogen sorption properties , 2003 .

[7]  T. Klassen,et al.  Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials , 2001 .

[8]  S. Orimo,et al.  Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2 , 2004 .

[9]  Thomas Klassen,et al.  Effect of Nb2O5 content on hydrogen reaction kinetics of Mg , 2004 .

[10]  Robert Schulz,et al.  Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite , 1999 .

[11]  H. Verweij,et al.  Friction behaviour of solid oxide lubricants as second phase in alpha-Al2O3 and stabilised ZrO2 composites , 2004 .

[12]  V. Boldyrev,et al.  Magnesium mechanical alloys for hydrogen storage , 1987 .

[13]  A. Züttel,et al.  Mechanically milled Mg composites for hydrogen storage the transition to a steady state composition , 1996 .

[14]  R. Schulz,et al.  Mechanical alloying and hydrogen absorption properties of the Mg–Ni system , 1998 .

[15]  F. Gennari,et al.  Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying , 2001 .

[16]  T. Klassen,et al.  Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst , 2003 .

[17]  A. Załuska,et al.  Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni , 1999 .

[18]  P. Peshev,et al.  Hydriding and dehydriding characteristics of mixtures with a high magnesium content obtained by sintering and mechanical alloying , 1995 .

[19]  James F. Shackelford,et al.  The CRC Materials Science And Engineering Handbook , 1991 .

[20]  L. Lurio,et al.  INVESTIGATION OF DEHYDROGENATION MECHANISM OF MGH2–NB NANOCOMPOSITES , 2003 .

[21]  P. Hagenmuller,et al.  Amelioration des conditions de synthese de l'hydrure de magnesium a l'aide d'adjuvants , 1976 .

[22]  B. Hjörvarsson,et al.  Hydride formation in MgZrFe1.4Cr0.6 composite material , 1994 .

[23]  P. Rudman,et al.  Iron catalyzed hydriding of magnesium , 1982 .

[24]  M. Ziolek Niobium-containing catalysts—the state of the art , 2003 .

[25]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[26]  R. Schulz,et al.  Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite , 2000 .

[27]  Jong-Soo Bae,et al.  Improvement of hydrogen-storage properties of Mg by reactive mechanical grinding with Fe2O3 , 2005 .

[28]  E. Akiba,et al.  Preparation of the hydrides Mg2FeH6 and Mg2CoH5 by mechanical alloying followed by sintering , 1997 .

[29]  A. A. Nayeb-Hashemi,et al.  Phase diagrams of binary magnesium alloys , 1988 .

[30]  B. Bogdanovic,et al.  The development, testing and optimization of energy storage materials based on the MgH2Mg system , 1993 .

[31]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[32]  E. Akiba,et al.  Ball-milling of Mg2Ni under hydrogen , 1998 .

[33]  B. Bogdanovic,et al.  Active MgH2Mg-systems for hydrogen storage , 1987 .

[34]  S. Orimo,et al.  Thermal stabilities of amorphous Mg(Ni1−xTx) (T3d transition metals; x=0, 0.2, 0.4 and 0.5) , 1997 .

[35]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .