A double-leg donor-acceptor molecular elevator: new insight into controlling the distance of two platforms.

A double-leg elevator with an electron-rich anthracene moiety at the platformlike component and an electron-deficient naphthalenediimide unit in the middle of a double-leg riglike component was prepared through "click chemistry", in which the reversible elevator movement between different levels could be controlled upon the addition of base and acid.

[1]  Hsian-Rong Tseng,et al.  Switchable neutral bistable rotaxanes. , 2004, Journal of the American Chemical Society.

[2]  D. Qu,et al.  Altering intercomponent interactions in a photochromic multi-state [2]rotaxane. , 2011, Organic & biomolecular chemistry.

[3]  Lei Fang,et al.  An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.

[4]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[5]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[6]  J. F. Stoddart,et al.  The mechanical bond: a work of art. , 2012, Topics in current chemistry.

[7]  Yi‐Hung Liu,et al.  Acid/base- and anion-controllable organogels formed from a urea-based molecular switch. , 2010, Angewandte Chemie.

[8]  Ben L. Feringa,et al.  In control of switching, motion, and organization , 2003 .

[9]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[10]  J. F. Stoddart,et al.  Rotaxanes and Catenanes by Click Chemistry , 2007 .

[11]  Yasuyuki Yamada,et al.  Switchable intermolecular communication in a four-fold rotaxane. , 2012, Angewandte Chemie.

[12]  Yi‐Hung Liu,et al.  Use of anions to allow translational isomerism of a [2]rotaxane. , 2007, Chemistry.

[13]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[14]  B. Feringa,et al.  Light-driven molecular switches and motors , 2002 .

[15]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[16]  H. Tian,et al.  Bright functional rotaxanes. , 2010, Chemical Society reviews.

[17]  Vincenzo Balzani,et al.  Operating molecular elevators. , 2006, Journal of the American Chemical Society.

[18]  Nathalie Katsonis,et al.  Electrically driven directional motion of a four-wheeled molecule on a metal surface , 2011, Nature.

[19]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[20]  Kevin D. Haenni,et al.  The application of CuAAC 'click' chemistry to catenane and rotaxane synthesis. , 2010, Chemical Society reviews.

[21]  F. Coutrot,et al.  A new glycorotaxane molecular machine based on an anilinium and a triazolium station. , 2008, Chemistry.

[22]  Chuan-Feng Chen,et al.  A new [3]rotaxane molecular machine based on a dibenzylammonium ion and a triazolium station. , 2010, Organic letters.

[23]  Yi‐Hung Liu,et al.  A molecular cage-based [2]rotaxane that behaves as a molecular muscle. , 2009, Organic letters.

[24]  David J. Williams,et al.  Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules , 1995 .

[25]  F. Coutrot,et al.  Controlling the chair conformation of a mannopyranose in a large-amplitude [2]rotaxane molecular machine. , 2009, Chemistry.

[26]  Kevin D. Haenni,et al.  A rotaxane-based switchable organocatalyst. , 2012, Angewandte Chemie.

[27]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[28]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[29]  B. Feringa,et al.  In control of motion: from molecular switches to molecular motors. , 2001, Accounts of chemical research.

[30]  Yu Liu,et al.  pH-Controlled intramolecular charge-transfer behavior in bistable [3]rotaxane. , 2010, Organic letters.

[31]  Wei Jiang,et al.  A double plug-socket system capable of molecular keypad locks through controllable photooxidation. , 2009, Chemistry.