The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces

Erd?s-Ko-Rado sets of planes in a projective or polar space are non-extendable sets of planes such that every two have a non-empty intersection. In this article we classify all Erd?s-Ko-Rado sets of planes that generate at least a 6-dimensional space. For general dimension (projective space) or rank (polar space) we give a classification of the ten largest types of Erd?s-Ko-Rado sets of planes. For some small cases we find a better, sometimes complete, classification.

[1]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[2]  D. E. Taylor The geometry of the classical groups , 1992 .

[3]  Aart Blokhuis,et al.  A Hilton-Milner Theorem for Vector Spaces , 2010, Electron. J. Comb..

[4]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[5]  John Bamberg,et al.  Every flock generalized quadrangle has a hemisystem , 2009, 0912.2574.

[6]  Leo Storme,et al.  Theorems of Erdos-Ko-Rado type in polar spaces , 2011, J. Comb. Theory A.

[7]  Aart Blokhuis,et al.  On the chromatic number of q-Kneser graphs , 2012, Des. Codes Cryptogr..

[8]  Peter Frankl,et al.  The Erdös-Ko-Rado theorem for vector spaces , 1986, J. Comb. Theory, Ser. A.

[9]  J. Thas,et al.  General Galois geometries , 1992 .

[10]  W. N. Hsieh,et al.  Intersection theorems for systems of finite vector spaces , 1975, Discret. Math..

[11]  Peter Wild,et al.  FINITE PROJECTIVE SPACES OF THREE DIMENSIONS (Oxford Mathematical Monographs) , 1987 .

[12]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[13]  Jacques Tits,et al.  Buildings of Spherical Type and Finite BN-Pairs , 1974 .

[14]  Tjj Tim Mussche,et al.  Extremal combinatorics in generalized Kneser graphs , 2003 .

[15]  Hajime Tanaka,et al.  Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs , 2006, J. Comb. Theory, Ser. A.

[16]  Andries E. Brouwer,et al.  A new family of distance-regular graphs and the {0, 1, 2}-cliques in dual polar graphs , 1992, Eur. J. Comb..