The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces
暂无分享,去创建一个
[1] J. Hirschfeld. Finite projective spaces of three dimensions , 1986 .
[2] D. E. Taylor. The geometry of the classical groups , 1992 .
[3] Aart Blokhuis,et al. A Hilton-Milner Theorem for Vector Spaces , 2010, Electron. J. Comb..
[4] A. Hora,et al. Distance-Regular Graphs , 2007 .
[5] John Bamberg,et al. Every flock generalized quadrangle has a hemisystem , 2009, 0912.2574.
[6] Leo Storme,et al. Theorems of Erdos-Ko-Rado type in polar spaces , 2011, J. Comb. Theory A.
[7] Aart Blokhuis,et al. On the chromatic number of q-Kneser graphs , 2012, Des. Codes Cryptogr..
[8] Peter Frankl,et al. The Erdös-Ko-Rado theorem for vector spaces , 1986, J. Comb. Theory, Ser. A.
[9] J. Thas,et al. General Galois geometries , 1992 .
[10] W. N. Hsieh,et al. Intersection theorems for systems of finite vector spaces , 1975, Discret. Math..
[11] Peter Wild,et al. FINITE PROJECTIVE SPACES OF THREE DIMENSIONS (Oxford Mathematical Monographs) , 1987 .
[12] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .
[13] Jacques Tits,et al. Buildings of Spherical Type and Finite BN-Pairs , 1974 .
[14] Tjj Tim Mussche,et al. Extremal combinatorics in generalized Kneser graphs , 2003 .
[15] Hajime Tanaka,et al. Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs , 2006, J. Comb. Theory, Ser. A.
[16] Andries E. Brouwer,et al. A new family of distance-regular graphs and the {0, 1, 2}-cliques in dual polar graphs , 1992, Eur. J. Comb..