Nanometric superlattices: non-lithographic fabrication, materials, and prospects

A non-lithographic technique that utilizes the self-organized, highly ordered anodized aluminum oxide (AAO) porous membrane as a template is employed as a general fabrication means for the formation of vastly different two-dimensional lateral nanometric superlattices. The fact that material systems as different as metals, semiconductors, and carbon nanotubes (CNT) can be treated with the same ease attests to the generality of this nano-fabrication approach. The original alumina nanopore membranes determine the uniformity, packing density, and size of the nanostructures. The flexibility of using a variety of materials, the accurate control over fabrication process, and the command over the alumina template attributes give us the freedom of engineering various physical properties determined by the shape, size, composition, and doping of the nanostructures. The novel nanomaterial platform realized by this unique technique is powerfully enabling for a broad range of applications as well as for uncovering new physical phenomena such as the collective behavior of arrays of nano-elements that may not be intrinsic to individual nano-elements.

[1]  Yingke Zhou,et al.  Synthesis of high-ordered LiNi0.5Co0.5O2 nanowire arrays by AAO template and its structural properties , 2002 .

[2]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[3]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[4]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[5]  Hideki Masuda,et al.  Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask , 1996 .

[6]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[7]  Jimmy Xu,et al.  Fabrication of highly ordered metallic nanowire arrays by electrodeposition , 2001 .

[8]  Xiangfeng Duan,et al.  Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires , 2000 .

[9]  Dapeng Yu,et al.  Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach , 2001 .

[10]  Ralf B. Wehrspohn,et al.  Highly ordered monocrystalline silver nanowire arrays , 2002 .

[11]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[12]  Xinsheng Peng,et al.  Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties , 2002 .

[13]  D. Bimberg,et al.  Quantum-dot heterostructure lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[15]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[16]  A. Zayats,et al.  Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. , 2001, Physical review letters.

[17]  Jimmy Xu,et al.  Highly periodic, three-dimensionally arranged InGaAsN : Sb quantum dot arrays fabricated nonlithographically for optical devices , 2003 .

[18]  Frank Müller,et al.  Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina , 1998 .

[19]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[20]  C. Grimes,et al.  Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate , 2001 .

[21]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[22]  G. Wood,et al.  Electron‐Optical Examination of Sealed Anodic Alumina Films: Surface and Interior Effects , 1969 .

[23]  Jing Li,et al.  Nanoscale Electroless Metal Deposition in Aligned Carbon Nanotubes , 1998 .

[24]  Mikio Konno,et al.  A composite palladium and porous aluminum oxide membrane for hydrogen gas separation , 1988 .

[25]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[26]  Yingke Zhou,et al.  Synthesis of high-ordered LiMn2O4 nanowire arrays by AAO template and its structural properties , 2002 .

[27]  P. Collins,et al.  Nanoscale electronic devices on carbon nanotubes , 1998 .

[28]  C. Papadopoulos,et al.  ENGINEERING CARBON NANOTUBES VIA TEMPLATE GROWTH , 2002 .

[29]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[30]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[31]  R W Keyes,et al.  What Makes a Good Computer Device? , 1985, Science.

[32]  C. R. Martin,et al.  Template synthesis of graphitic nanotubules , 1995 .

[33]  Kazuyuki Nishio,et al.  Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask , 2000 .

[34]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[35]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[36]  Zhanghua Wu,et al.  Molecular beam epitaxial growth studies of ordered GaAs nanodot arrays using anodic alumina masks , 2003 .

[37]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[38]  Akira Tomita,et al.  Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film , 1996 .

[39]  Supriyo Bandyopadhyay,et al.  Electrochemically assembled quasi-periodic quantum dot arrays , 1996 .

[40]  Xu,et al.  Electronic transport in Y-junction carbon nanotubes , 2000, Physical review letters.

[41]  Y. Morishita,et al.  Effects of regularity of honeycomb hollows formed by the anodization of GaAs substrates on the molecular-beam epitaxial growth of InAs dots , 2001 .

[42]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[43]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[44]  Toshiaki Tamamura,et al.  GaAs and InP Nanohole Arrays Fabricated by Reactive Beam Etching Using Highly Ordered Alumina Membranes , 1999 .

[45]  K. Nishio,et al.  Ideally Ordered Metal Hole Arrays with High Aspect Ratios Prepared from Anodic Porous Alumina , 2003 .

[46]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[47]  Jianyu Liang,et al.  Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template , 2002 .

[48]  J. Im,et al.  Fabrication of 50–100 nm Patterned InGaN Blue Light Emitting Heterostructures , 2001 .

[49]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[50]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[51]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[52]  Yingke Zhou,et al.  Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template , 2002 .

[53]  Jianyu Liang,et al.  Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications , 2002 .

[54]  Xiaolong Chen,et al.  Fabrication of zinc oxide nanorods , 2001 .

[55]  Q. Fareed,et al.  Selective fabrication of InGaN nanostructures by the focused ion beam/metalorganic chemical vapor deposition process , 2000 .

[56]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[57]  Jeong-O Lee,et al.  Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes , 2001 .

[58]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[59]  J. Feuchtwanger,et al.  Structure, Thermal Stability, and Deformation of Multibranched Carbon Nanotubes Synthesized by CVD in the AAO Template , 2001 .

[60]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[61]  Xinsheng Peng,et al.  Fabrication and photoluminescence of ordered GaN nanowire arrays , 2001 .

[62]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[63]  Jih-Jen Wu,et al.  Catalyst-Free Growth and Characterization of ZnO Nanorods , 2002 .

[64]  Harry E. Ruda,et al.  Fabrication of ZnTe Nanohole Arrays by Reactive Ion Etching Using Anodic Alumina Templates , 2002 .

[65]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[66]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[67]  Z. Chu,et al.  Thin Au film with highly ordered arrays of hemispherical dots , 2001 .

[68]  Paul B. Fischer,et al.  Single‐domain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage , 1994 .

[69]  R. Beresford,et al.  Nanoheteroepitaxy of GaN on a nanopore array Si surface , 2003 .

[70]  G. Meng,et al.  Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties , 2000 .

[71]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[72]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[73]  G. Meng,et al.  Fabrication and temperature dependence of the resistance of single-crystalline Bi nanowires , 2001 .

[74]  R. L. Jones,et al.  Growth of vertically self-organized InGaAs quantum dots with narrow inhomogeneous broadening , 2000 .

[75]  David T. Crouse,et al.  Self-ordered pore structure of anodized aluminum on silicon and pattern transfer , 2000 .

[76]  M. Moskovits,et al.  Coulomb blockade in nano-junction array fabricated by nonlithographic method , 1998 .

[77]  Dongsheng Xu,et al.  Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates , 2000 .

[78]  Harry E. Ruda,et al.  Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks , 2002 .

[79]  Takayuki Takahagi,et al.  Fabrication of nanohole array on Si using self-organized porous alumina mask , 2001 .

[80]  V. Varadarajan,et al.  Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy , 2002 .

[81]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[82]  C. Papadopoulos,et al.  Nanoelectronics: Growing Y-junction carbon nanotubes , 1999, Nature.

[83]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[84]  G. Crabtree,et al.  Vortices in dense self-assembled hole arrays , 2002 .

[85]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[86]  D. Qin,et al.  Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method , 2003 .

[87]  H. Ishikawa,et al.  1.3-/spl mu/m CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots , 2000, IEEE Journal of Quantum Electronics.

[88]  Yingke Zhou,et al.  Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties , 2002 .

[89]  Jing Zhang,et al.  Morphology and Raman scattering spectrum of GaN nanowires embedded in nanochannels of template , 2002 .

[90]  Martin Moskovits,et al.  Nonlithographic nano-wire arrays: fabrication, physics, and device applications , 1996 .

[91]  Youwei Du,et al.  Preparation and magnetic property of Fe nanowire array , 2000 .

[92]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[93]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[94]  Hu-lin Li,et al.  Morphology and photoluminescent properties of poly(p-phenylene) nanofibre arrays fabricated by template method , 2002 .

[95]  Ralf B. Wehrspohn,et al.  Hexagonally ordered 100 nm period nickel nanowire arrays , 2001 .