Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia

B. Qian | Hongbing Shen | Chien-Jen Chen | N. Rothman | S. Chanock | R. Vermeulen | N. Chatterjee | J. Yokota | W. Pao | T. Kohno | K. Jacobs | M. Yeager | Zhaoming Wang | A. Hutchinson | Junwen Wang | M. Tucker | J. Fraumeni | R. Klein | W. Tan | Chen Wu | D. Lin | Jingyan Dong | Zhibin Hu | Jiang Chang | Tangchun Wu | X. Shu | Y. Xiang | J. Yuenger | Charles C. Chung | W. Zheng | L. Burdett | W. Chow | A. Sihoe | S. Berndt | Jianjun Liu | C. Kang | H. Hosgood | Guoping Wu | J. Wu | K. Matsuo | W. Lim | Q. Cai | T. Mitsudomi | Yi-long Wu | Yuh-Min Chen | R. Perng | V. Lee | C. Hsiung | Youngchul Kim | Q. Lan | I. Chang | Chih-Yi Chen | G. Chang | Pan‐Chyr Yang | Yuqing Li | J. Park | H. Jeon | J. Chan | Tsung-Ying Yang | Kun-Chieh Chen | W. Su | J. Choi | B. Ji | J. Hung | Jun Suk Kim | Yeul-Hong Kim | M. Shin | H. Kim | Yun-Chul Hong | C. Hsiao | I. Oh | Chong-Jen Yu | S. Kweon | H. Yoon | Kexin Chen | M. Landi | Hongyan Chen | D. Lu | N. Caporaso | M. Wong | Jiucun Wang | Li Jin | Wei Wu | P. Guan | Baosen Zhou | Kuan-Yu Chen | K. Shiraishi | Li Liu | Huan Guo | B. Bassig | Wei Hu | Junjie Wu | Hong Zheng | Y. T. Kim | A. Seow | Chien-Chung Lin | Charles Lawrence | F. Wei | Zhihua Yin | S. An | J. Sung | J. H. Kim | Yu-Tang Gao | Y. Tsai | Y. Jung | Wen-Chang Wang | Xingzhou He | Xuchao Zhang | Ming-Shyan Huang | Xueying Zhao | K. Park | S. Sung | Lingmin Hu | Chung-Hsing Chen | Jun Xu | Jian Su | Chih-Liang Wang | Haixin Li | Zhenhong Zhao | Ying Chen | Y. Choi | I. Park | P. Xu | Christopher Kim | Qincheng He | M. Chu | Yao-Jen Li | Jihua Li | H. Kunitoh | Y. Lo | Ying-Hsiang Chen | Hsien-Chih Lin | Charles E. Lawrence | Yu‐Tang Gao | Chih‐Liang Wang | Young-chul Kim | J. Su | Ming-Shyan Huang | Kuan-Yu Chen | Chih‐Yi Chen | Yu-tang Gao | Yen‐Li Lo | Kexin Chen | W. Tan | Y. T. Kim | W. Lim | Yuting Gao

[1]  Chien-Jen Chen,et al.  Risk factors for primary lung cancer among never smokers by gender in a matched case–control study , 2013, Cancer Causes & Control.

[2]  Hongbing Shen,et al.  Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population , 2012, Nature Genetics.

[3]  Yusuke Nakamura,et al.  A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population , 2012, Nature Genetics.

[4]  Sébastien Couraud,et al.  Lung cancer in never smokers--a review. , 2012, European journal of cancer.

[5]  N. Hu,et al.  Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies. , 2012, Human molecular genetics.

[6]  B. Qian,et al.  Genetic variant in TP63 on locus 3q28 is associated with risk of lung adenocarcinoma among never-smoking females in Asia , 2012, Human Genetics.

[7]  Yuki Togashi,et al.  RET, ROS1 and ALK fusions in lung cancer , 2012, Nature Medicine.

[8]  Y. Kamatani,et al.  Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. , 2012, Journal of the National Cancer Institute.

[9]  Jianxin Shi,et al.  Inherited variation at chromosome 12p13.33, including RAD52, influences the risk of squamous cell lung carcinoma. , 2012, Cancer discovery.

[10]  Ege T. Kavalali,et al.  Vti1a Identifies a Vesicle Pool that Preferentially Recycles at Rest and Maintains Spontaneous Neurotransmission , 2012, Neuron.

[11]  A. Tsao,et al.  ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers , 2012 .

[12]  Nilanjan Chatterjee,et al.  Improved imputation of common and uncommon SNPs with a new reference set , 2011, Nature Genetics.

[13]  A. Iafrate,et al.  Spectrum of Oncogenic Driver Mutations in Lung Adenocarcinomas from East Asian Never Smokers , 2011, PloS one.

[14]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[15]  Wen Tan,et al.  A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese , 2011, Nature Genetics.

[16]  P. Broderick,et al.  Chromosome 15q25 (CHRNA3-CHRNA5) Variation Impacts Indirectly on Lung Cancer Risk , 2011, PloS one.

[17]  K. Krieglstein,et al.  Lack of the endosomal SNAREs vti1a and vti1b led to significant impairments in neuronal development , 2011, Proceedings of the National Academy of Sciences.

[18]  H. Ji,et al.  Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  Yusuke Nakamura,et al.  Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations , 2010, Nature Genetics.

[20]  Chung K. Chang,et al.  The 5p15.33 Locus Is Associated with Risk of Lung Adenocarcinoma in Never-Smoking Females in Asia , 2010, PLoS genetics.

[21]  Paul Brennan,et al.  Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. , 2010, Journal of the National Cancer Institute.

[22]  Ying Wang,et al.  A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.

[23]  K. Nakanishi,et al.  Capture of Type 1 Diabetes–Susceptible HLA DR-DQ Haplotypes in Japanese Subjects Using a Tag Single Nucleotide Polymorphism , 2009, Diabetes Care.

[24]  William Pao,et al.  Lung Cancer in Never Smokers: Molecular Profiles and Therapeutic Implications , 2009, Clinical Cancer Research.

[25]  Erika Avila-Tang,et al.  Lung Cancer in Never Smokers: Clinical Epidemiology and Environmental Risk Factors , 2009, Clinical Cancer Research.

[26]  Geoffrey S. Tobias,et al.  Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.

[27]  Wen Tan,et al.  Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. , 2009, Cancer research.

[28]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[29]  J. Acquaviva,et al.  The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. , 2009, Biochimica et biophysica acta.

[30]  Christopher I Amos,et al.  Common 5p15.33 and 6p21.33 variants influence lung cancer risk , 2008, Nature Genetics.

[31]  Simon Heath,et al.  Lung cancer susceptibility locus at 5p15.33 , 2008, Nature Genetics.

[32]  M. Spitz,et al.  The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. , 2008, Journal of the National Cancer Institute.

[33]  Manuel A. R. Ferreira,et al.  Practical aspects of imputation-driven meta-analysis of genome-wide association studies. , 2008, Human molecular genetics.

[34]  Erika Avila-Tang,et al.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies , 2008, PLoS medicine.

[35]  G. Mills,et al.  Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 , 2008, Nature Genetics.

[36]  Paolo Vineis,et al.  A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 , 2008, Nature.

[37]  Mirang Kim,et al.  Epigenetic Down-Regulation and Suppressive Role of DCBLD2 in Gastric Cancer Cell Proliferation and Invasion , 2008, Molecular Cancer Research.

[38]  Stephen J. Chanock,et al.  Genomics: When the smoke clears ... , 2008, Nature.

[39]  C. Mantzoros,et al.  Circulating Adiponectin Levels and Expression of Adiponectin Receptors in Relation to Lung Cancer: Two Case-Control Studies , 2008, Oncology.

[40]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[41]  A. Gazdar,et al.  Lung cancer in never smokers — a different disease , 2007, Nature Reviews Cancer.

[42]  H. Osada,et al.  CLCP1 interacts with semaphorin 4B and regulates motility of lung cancer cells , 2007, Oncogene.

[43]  Augustin Luna,et al.  snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package , 2007, Bioinform..

[44]  These authors contributed equally to this work. , 2007 .

[45]  Paul Fearnhead,et al.  Bioinformatics Original Paper Sequenceldhot: Detecting Recombination Hotspots , 2022 .

[46]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[47]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[48]  A. Bose,et al.  The v-SNARE Vti1a Regulates Insulin-stimulated Glucose Transport and Acrp30 Secretion in 3T3-L1 Adipocytes* , 2005, Journal of Biological Chemistry.

[49]  K. Reynolds,et al.  Cigarette smoking and exposure to environmental tobacco smoke in China: the international collaborative study of cardiovascular disease in Asia. , 2004, American journal of public health.

[50]  Peter Donnelly,et al.  Application of Coalescent Methods to Reveal Fine-Scale Rate Variation and Recombination Hotspots , 2004, Genetics.

[51]  Q. Lan,et al.  Household stove improvement and risk of lung cancer in Xuanwei, China. , 2002, Journal of the National Cancer Institute.

[52]  Akira Masuda,et al.  Significant up-regulation of a novel gene, CLCP1, in a highly metastatic lung cancer subline as well as in lung cancers in vivo , 2002, Oncogene.

[53]  J. Schlessinger Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[54]  J. Schlessinger,et al.  Signaling by Receptor Tyrosine Kinases , 1993 .

[55]  J. Fraumeni,et al.  Lung cancer among Chinese women , 1987, International journal of cancer.