A multigrid method for the generalized symmetric eigenvalue problem: Part I—algorithm and implementation

A multigrid method is described that can solve the generalized eigenvalue problem encountered in structural dynamics. The algorithm combines relaxation on a fine mesh with the solution of a singular equation on a coarse mesh. A sequence of coarser meshes may be used to quickly solve this singular equation using another multigrid method. The hierarchy of increasingly finer meshes can be further exploited using a nested iteration scheme, whereby initial approximations to the fine mesh eigenvectors are computed using interpolated coarse mesh eigenvectors. The solution of some simple plate problems on a Convex C240 demonstrates the efficiency of a vectorized version of the multigrid algorithm.

[1]  M. Hestenes,et al.  A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix , 1951 .

[2]  I. D. Parsons,et al.  The multigrid method in solid mechanics: Part II—Practical applications , 1990 .

[3]  I. Parsons,et al.  A multigrid method for the generalized symmetric eigenvalue problem: Part II—performance evaluation , 1992 .

[4]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[5]  Dietrich Braess,et al.  A multigrid method for the membrane problem , 1988 .

[6]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[7]  A partial preconditioned conjugate gradient method for large eigenproblems , 1987 .

[8]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[9]  Thomas J. R. Hughes,et al.  LARGE-SCALE VECTORIZED IMPLICIT CALCULATIONS IN SOLID MECHANICS ON A CRAY X-MP/48 UTILIZING EBE PRECONDITIONED CONJUGATE GRADIENTS. , 1986 .

[10]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[11]  Ted Belytschko,et al.  A stabilization matrix for the bilinear mindlin plate element , 1981 .

[12]  J. Hall,et al.  The multigrid method in solid mechanics: Part I—Algorithm description and behaviour , 1990 .

[13]  I. D. Parsons The implementation of an element level multigrid algorithm on the alliant FX/8 , 1989 .

[14]  Wolfgang Hackbusch,et al.  On the Computation of Approximate Eigenvalues and Eigenfunctions of Elliptic Operators by Means of a Multi-Grid Method , 1979 .

[15]  R. Fletcher,et al.  New iterative methods for solution of the eigenproblem , 1966 .

[16]  G. A. Frazier,et al.  Treatment of hourglass patterns in low order finite element codes , 1978 .