Host Dark Matter Halos of Wide-field Infrared Survey Explorer-selected Obscured and Unobscured Quasars: Evidence for Evolution

Obscuration in quasars may arise from steep viewing angles along the dusty torus, or instead may represent a distinct phase of supermassive black hole growth. We test these scenarios by probing the host dark matter halo environments of ∼1.4 million Wide-field Infrared Survey Explorer-selected obscured and unobscured quasars at 〈z〉 = 1.4 using angular clustering measurements as well as cross-correlation measurements of quasar positions with the gravitational lensing of the cosmic microwave background. We interpret these signals within a halo occupation distribution framework to conclude that obscured systems reside in more massive effective halos (∼1012.9 h −1 M ⊙) than their unobscured counterparts (∼1012.6 h −1 M ⊙), though we do not detect a difference in the satellite fraction. We find excellent agreement between the clustering and lensing analyses and show that this implies the observed difference is robust to uncertainties in the obscured quasar redshift distribution, highlighting the power of combining angular clustering and weak lensing measurements. This finding appears in tension with models that ascribe obscuration exclusively to orientation of the dusty torus along the line of sight, and instead may be consistent with the notion that some obscured quasars are attenuated by galaxy-scale or circumnuclear material during an evolutionary phase.

[1]  A. Myers,et al.  The DESI Survey Validation: Results from Visual Inspection of the Quasar Survey Spectra , 2022, The Astronomical Journal.

[2]  Sergey E. Koposov,et al.  The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[3]  A. Myers,et al.  Target Selection and Validation of DESI Quasars , 2022, The Astrophysical Journal.

[4]  A. Georgakakis,et al.  A panchromatic view of infrared quasars: excess star formation and radio emission in the most heavily obscured systems , 2022, 2209.13321.

[5]  M. Mignoli,et al.  Supermassive black holes at high redshift are expected to be obscured by their massive host galaxies' interstellar medium , 2022, Astronomy & Astrophysics.

[6]  A. Myers,et al.  Host Dark Matter Halos of SDSS Red and Blue Quasars: No Significant Difference in Large-scale Environment , 2022, The Astrophysical Journal.

[7]  O. I. Wong,et al.  BASS. XXX. Distribution Functions of DR2 Eddington Ratios, Black Hole Masses, and X-Ray Luminosities , 2022, The Astrophysical Journal Supplement Series.

[8]  Australian National University,et al.  The Black Hole–Galaxy Connection: Interplay between Feedback, Obscuration, and Host Galaxy Substructure , 2021, The Astrophysical Journal.

[9]  R. Assef,et al.  A Catalog of Host Galaxies for WISE-selected AGN: Connecting Host Properties with Nuclear Activity and Identifying Contaminants , 2021, The Astrophysical Journal.

[10]  J. Silverman,et al.  The Sizes of Quasar Host Galaxies in the Hyper Suprime-Cam Subaru Strategic Program , 2021, The Astrophysical Journal.

[11]  H. Rottgering,et al.  HELP: the Herschel Extragalactic Legacy Project , 2021, Monthly Notices of the Royal Astronomical Society.

[12]  D. Alexander,et al.  Chandra Observations of Excess Fe Kα Line Emission in Galaxies with High Star Formation Rates: X-Ray Reflection on Galaxy Scales? , 2021, 2104.10702.

[13]  D. Schlegel,et al.  The CatWISE2020 Catalog , 2020, The Astrophysical Journal Supplement Series.

[14]  A. Coil,et al.  The AGN–galaxy–halo connection: the distribution of AGN host halo masses to z = 2.5 , 2020, Monthly Notices of the Royal Astronomical Society.

[15]  Steven G. Murray,et al.  TheHaloMod: An online calculator for the halo model , 2020, Astron. Comput..

[16]  C. Heymans,et al.  hmcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback , 2020, Monthly Notices of the Royal Astronomical Society.

[17]  S. Zaroubi,et al.  The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1 , 2021 .

[18]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release , 2020, The Astrophysical Journal Supplement Series.

[19]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: a CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[20]  V. Wild,et al.  The clustering of X-ray AGN at 0.5 < z < 4.5: host galaxies dictate dark matter halo mass , 2020, 2003.10461.

[21]  C. M. Urry,et al.  The Clustering of X-Ray Luminous Quasars , 2020, The Astrophysical Journal.

[22]  G. Richards,et al.  The bolometric quasar luminosity function at z = 0–7 , 2020, Monthly Notices of the Royal Astronomical Society.

[23]  D. A. García-Hernández,et al.  The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2019, The Astrophysical Journal Supplement Series.

[24]  A. Myers,et al.  Physical Models for the Clustering of Obscured and Unobscured Quasars , 2019, The Astrophysical Journal.

[25]  J. Peacock,et al.  Multitracer extension of the halo model: probing quenching and conformity in eBOSS , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  M. White,et al.  unWISE tomography of Planck CMB lensing , 2019, Journal of Cosmology and Astroparticle Physics.

[27]  Anthony H. Gonzalez,et al.  The CatWISE Preliminary Catalog: Motions from WISE and NEOWISE Data , 2019, The Astrophysical Journal Supplement Series.

[28]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[29]  L. Garrison,et al.  corrfunc – a suite of blazing fast correlation functions on the CPU , 2019, Monthly Notices of the Royal Astronomical Society.

[30]  D. Lang,et al.  unWISE Coadds: The Five-year Data Set , 2019, Publications of the Astronomical Society of the Pacific.

[31]  Yannick Roehlly,et al.  HELP: a catalogue of 170 million objects, selected at 0.36–4.5 μm, from 1270 deg2 of prime extragalactic fields , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  Leo Singer,et al.  healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..

[33]  M. Massardi,et al.  X-ray emission of z > 2.5 active galactic nuclei can be obscured by their host galaxies , 2019, Astronomy & Astrophysics.

[34]  Olivier Ilbert,et al.  The FMOS-COSMOS Survey of Star-forming Galaxies at z ∼ 1.6. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies , 2018, The Astrophysical Journal Supplement Series.

[35]  F. Civano,et al.  The Accretion History of AGNs. I. Supermassive Black Hole Population Synthesis Model , 2018, The Astrophysical Journal.

[36]  A. Slosar,et al.  A unified pseudo-Cℓ framework , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[38]  J. Comparat,et al.  Exploring the halo occupation of AGN using dark-matter cosmological simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[39]  J. Silverman,et al.  An FMOS Survey of Moderate-luminosity, Broad-line AGNs in COSMOS, SXDS, and E-CDF-S , 2018, The Astrophysical Journal Supplement Series.

[40]  A. Georgakakis,et al.  Dependence of clustering of X-ray AGN on obscuration , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  R. B. Barreiro,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[42]  J. Trump,et al.  Does black-hole growth depend on the cosmic environment? , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  D. Alexander,et al.  Obscured Active Galactic Nuclei , 2018, Annual Review of Astronomy and Astrophysics.

[44]  G. Hasinger,et al.  The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field , 2018, 1803.09251.

[45]  K. Schawinski,et al.  The Swift/BAT AGN Spectroscopic Survey. IX. The Clustering Environments of an Unbiased Sample of Local AGNs , 2018, 1803.07589.

[46]  A. Myers,et al.  The Halo Occupation Distribution of obscured quasars: revisiting the unification model , 2018, 1802.04758.

[47]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[48]  Benedikt Diemer,et al.  COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos , 2017, The Astrophysical Journal Supplement Series.

[49]  D. Walton,et al.  Heavy X-ray obscuration in the most luminous galaxies discovered by WISE , 2017, 1712.00031.

[50]  A. Coil,et al.  Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies , 2017, 1710.05638.

[51]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[52]  C. Casey,et al.  The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5 , 2017, 1710.06872.

[53]  Richard Mushotzky,et al.  The close environments of accreting massive black holes are shaped by radiative feedback , 2017, Nature.

[54]  A. Myers,et al.  Composite Spectral Energy Distributions and Infrared–Optical Colors of Type 1 and Type 2 Quasars , 2017, 1709.04468.

[55]  C. R. Almeida,et al.  Nuclear obscuration in active galactic nuclei , 2017, Nature Astronomy.

[56]  R. Cutri,et al.  The WISE AGN Catalog , 2017, 1706.09901.

[57]  A. Myers,et al.  The characteristic halo masses of half-a-million WISE-selected quasars , 2017, 1705.05306.

[58]  A. Myers,et al.  Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination , 2017, 1705.04718.

[59]  A. Coil,et al.  X-rays across the galaxy population - II. The distribution of AGN accretion rates as a function of stellar mass and redshift , 2017, 1705.01132.

[60]  D. Schneider,et al.  Observational constraints on the specific accretion-rate distribution of X-ray-selected AGNs , 2017, 1705.01133.

[61]  J. E. Ruhl,et al.  A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data , 2017, 1705.00743.

[62]  O. Fèvre,et al.  The VLA-COSMOS 3~GHz Large Project: AGN and host-galaxy properties out to z≲6 , 2017, 1703.09720.

[63]  L. Ho,et al.  Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured , 2017, 1701.04825.

[64]  A. Myers,et al.  A unifying evolutionary framework for infrared-selected obscured and unobscured quasar host haloes , 2016, 1610.03493.

[65]  M. Strauss,et al.  CLUSTERING OF INFRARED-BRIGHT DUST-OBSCURED GALAXIES REVEALED BY THE HYPER SUPRIME-CAM AND WISE , 2016, 1612.01088.

[66]  S. Schulze,et al.  Galaxy gas as obscurer: I. GRBs x-ray galaxies and find a N_H ~ M* relation , 2016, 1610.09379.

[67]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[68]  A. Myers,et al.  The impact of the dusty torus on obscured quasar halo mass measurements , 2016, 1604.06811.

[69]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[70]  D. Rupke,et al.  The infrared database of extragalactic observables from Spitzer – I. The redshift catalogue , 2015, 1511.07451.

[71]  A. Myers,et al.  Updated measurements of the dark matter halo masses of obscured quasars with improved WISE and Planck data , 2015, 1511.04469.

[72]  D. Elbaz,et al.  Mid-infrared Luminous Quasars in the GOODS– Herschel Fields: A Large Population of Heavily Obscured, Compton-Thick Quasars at z ≈ 2 , 2015, 1504.03329.

[73]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[74]  H. Netzer Revisiting the Unified Model of Active Galactic Nuclei , 2015, 1505.00811.

[75]  A. Coil,et al.  The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z ~ 5 , 2015, 1503.01120.

[76]  R. Maiolino,et al.  The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at z ~ 2.3 , 2014, 1412.3595.

[77]  Princeton,et al.  The dark matter haloes of moderate luminosity X-ray AGN as determined from weak gravitational lensing and host stellar masses , 2014, 1410.5817.

[78]  A. Ealet,et al.  The 0.1 , 2014, 1408.1523.

[79]  A. Myers,et al.  Weighing obscured and unobscured quasar hosts with the cosmic microwave background , 2014, 1411.0527.

[80]  H. Hoekstra,et al.  The clustering of baryonic matter. II: halo model and hydrodynamic simulations , 2014, 1406.5013.

[81]  A. Myers,et al.  The angular clustering of infrared-selected obscured and unobscured quasars , 2014, 1406.0778.

[82]  P. Fernique,et al.  MOC - HEALPix Multi-Order Coverage map Version 1.0 , 2014, 1505.02937.

[83]  V. Cunningham,et al.  THE WISE CATALOG OF GALACTIC H ii REGIONS , 2013, 1312.6202.

[84]  L. Storrie-Lombardi,et al.  The Spitzer mid-infrared AGN survey. I - optical and near-infrared spectroscopy of candidate obscured and normal AGN selected in the mid-infrared , 2013, 1308.4190.

[85]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[86]  I. Karachentsev,et al.  UPDATED NEARBY GALAXY CATALOG , 2013, 1303.5328.

[87]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[88]  D. Alexander,et al.  What drives the growth of black holes , 2011, 1112.1949.

[89]  N. Clerc,et al.  Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field , 2011, 1111.5982.

[90]  A. Georgakakis,et al.  The clustering of X-ray selected AGN at z=0.1 , 2011, 1110.5910.

[91]  Zheng Zheng,et al.  The halo occupation distribution of active galactic nuclei , 2011, 1104.3550.

[92]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[93]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[94]  F. J. Carrera,et al.  High-precision multi-band measurements of the angular clustering of X-ray sources , 2009, 0904.3024.

[95]  Caltech,et al.  Revealing X-ray obscured quasars in SWIRE sources with extreme mid-IR/optical flux ratios , 2009, 0902.2517.

[96]  L. Guzzo,et al.  The spatial clustering of X-ray selected AGN in the XMM-COSMOS field , 2008, 0810.4769.

[97]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[98]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. III. The MBH-σ* Relation in the Last Six Billion Years , 2008, 0804.0235.

[99]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[100]  A. M. Swinbank,et al.  WEIGHING THE BLACK HOLES IN z ≈ 2 SUBMILLIMETER-EMITTING GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, The Astronomical Journal.

[101]  Arjun Dey,et al.  A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2 , 2008, 0801.1860.

[102]  M. Swanson,et al.  Methods for rapidly processing angular masks of next-generation galaxy surveys , 2007, 0711.4352.

[103]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[104]  G. Zamorani,et al.  Unveiling Obscured Accretion in the Chandra Deep Field-South , 2007, 0705.2864.

[105]  NOAO,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 A LARGE POPULATION OF MID-INFRARED SELECTED, OBSCURED ACTIVE GALAXIES IN THE BOÖTES FIELD , 2022 .

[106]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[107]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[108]  P. Simon How accurate is Limber's equation? , 2006, astro-ph/0609165.

[109]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[110]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[111]  D. O. Astronomy,et al.  AGES: THE AGN AND GALAXY EVOLUTION SURVEY , 2006, 1110.4371.

[112]  C. Impey,et al.  Quasars in the COSMOS Field , 2006, astro-ph/0602315.

[113]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[114]  Alexander G. Gray,et al.  First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.

[115]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[116]  D. Fabricant,et al.  XBootes: An X-Ray Survey of the NDWFS Bootes Field. II. The X-Ray Source Catalog , 2005, astro-ph/0507615.

[117]  P. Hopkins,et al.  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[118]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[119]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[120]  F. Masci,et al.  Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey , 2004, astro-ph/0405604.

[121]  Max Tegmark,et al.  A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys , 2003, astro-ph/0306324.

[122]  N. Bissantz,et al.  Monthly Notices of the Royal Astronomical Society , 2003 .

[123]  Caltech,et al.  The Far-Infrared Background Correlation with Cosmic Microwave Background Lensing , 2002, astro-ph/0209001.

[124]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[125]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[126]  D. Weinberg,et al.  Quasar Clustering and the Lifetime of Quasars , 2000, astro-ph/0002384.

[127]  Z. Haiman,et al.  Constraining the Lifetime of Quasars from Their Spatial Clustering , 2000, astro-ph/0002190.

[128]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[129]  M. Elvis A Structure for Quasars , 2000, astro-ph/0008064.

[130]  A. Cooray,et al.  Imprint of Reionization on the Cosmic Microwave Background Bispectrum , 1999, astro-ph/9910397.

[131]  A. Hamilton Uncorrelated modes of the non-linear power spectrum , 1999, astro-ph/9905191.

[132]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[133]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[134]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[135]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[136]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[137]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[138]  A. Agnès,et al.  Strasbourg-ESO Catalogue of Galactic Planetary Nebulae , 1993 .

[139]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[140]  A. Acker,et al.  The Strasbourg-ESO Catalogue of Galactic Planetary Nebulae. Parts I, II. , 1992 .

[141]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[142]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[143]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[144]  J. D. Talman,et al.  Numerical Fourier and Bessel transforms in logarithmic variables , 1978 .

[145]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. I. Theory , 1973 .

[146]  B. T. Lynds Catalogue of Bright Nebulae. , 1965 .

[147]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[148]  B. T. Lynds Catalogue of Dark Nebulae. , 1962 .

[149]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .