Mapping time series into networks as a tool to assess the complex dynamics of tourism systems

Abstract This paper contributes to filling two gaps: i) the presence of a limited amount of studies focused on tourism demand turning points, ii) the prevalent recourse to linear models in demand analysis, disregarding the complex structure of tourism destinations. The paper uses the Horizontal Visibility Graph Algorithm, a technique able to transform a time series of observations into a network whose topology preserves some fundamental characteristics of the system examined. The empirical work focuses on Livigno, an Italian alpine destination. Findings reveal four turning points in the last 50 years; these changes are built around shifts in the origin market segments. The network's degree distribution confirms the complex structure of the destination and reconfirms the importance of non-linear models and methods for the analysis of tourism demand.

[1]  J. Schumpeter The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle , 1934 .

[2]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[3]  B. Faulkner Rejuvenating a Maturing Tourist Destination: The Case of the Gold Coast , 2002 .

[4]  C. Barros,et al.  The length of stay in tourism , 2010 .

[5]  Steve Clarke,et al.  Information technology and tourism a theoretical critique , 2009 .

[6]  Haiyan Song,et al.  Tourism Demand Modelling And Forecasting: Modern Econometric Approaches , 2003 .

[7]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[8]  Rob Law,et al.  Categorical classification of tourism dining , 2002 .

[9]  Stephen Lansing,et al.  Complex Adaptive Systems , 2003 .

[10]  Henry Mintzberg,et al.  Of strategies, deliberate and emergent , 1985, Strategic Management Journal.

[11]  B. Faulkner,et al.  Entrepreneurship, chaos and the tourism area lifecycle. , 2004 .

[12]  B. Luque,et al.  Horizontal visibility graphs: exact results for random time series. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Ruggero Sainaghi Tourist expenditures: the state of the art , 2012 .

[14]  Klaus Mainzer,et al.  Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science , 2005 .

[15]  Hannes Werthner,et al.  Information Technology and Tourism — A Challenging Relationship , 1999 .

[16]  B. Faulkner,et al.  Condominium developments in maturing destinations: potentials and problems of long-term sustainability , 2003 .

[17]  Paul Lynch,et al.  Small tourism business networks and destination development , 2001 .

[18]  C. Lim,et al.  A Meta-Analytic Review of International Tourism Demand , 1999 .

[19]  Bob McKercher,et al.  A chaos approach to tourism , 1999 .

[20]  C. Lim,et al.  Review of international tourism demand models. , 1997 .

[21]  Rodolfo Baggio,et al.  Network Analysis Methods for Modeling Tourism Inter-Organizational Systems , 2011 .

[22]  Dianne Dredge Policy Networks and the local organisation of tourism , 2006 .

[23]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[24]  Torsten Bumgarner,et al.  Nonlinearity Chaos And Complexity The Dynamics Of Natural And Social Systems , 2016 .

[25]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Lucas Lacasa,et al.  From time series to complex networks: The visibility graph , 2008, Proceedings of the National Academy of Sciences.

[27]  G. Crouch Demand elasticities in international marketing : A meta-analytical application to tourism , 1996 .

[28]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[29]  Christine A. Hope,et al.  Strategic success in winter sports destinations: a sustainable value creation perspective. , 2001 .

[30]  E. Perona The confused state of complexity economics: an ontological explanation , 2007 .

[31]  A. Athiyaman,et al.  Time Series Forecasting Techniques: Short‐term Planning in Tourism , 1992 .

[32]  John E. Spillan,et al.  Crisis Management in the New Strategy Landscape , 2009 .

[33]  C. S. Holling Understanding the Complexity of Economic, Ecological, and Social Systems , 2001, Ecosystems.

[34]  Antonio L. García-Izquierdo,et al.  Chaotic dynamics and team effectiveness: Evidence from professional basketball , 2012 .

[35]  J. Sprott Chaos and time-series analysis , 2001 .

[36]  S. Hartman Towards adaptive tourism areas? A complexity perspective to examine the conditions for adaptive capacity , 2016 .

[37]  David Colander,et al.  Complexity hints for economic policy , 2007 .

[38]  N. Scott,et al.  Tourism Crises and Disasters: Enhancing Understanding of System Effects , 2005 .

[39]  I. Prigogine,et al.  From Being to Becoming: Time and Complexity in the Physical Sciences , 1982 .

[40]  John T. Coshall,et al.  Spectral analysis of international tourism flows , 2000 .

[41]  B. Farrell,et al.  RECONCEPTUALIZING TOURISM , 2004 .

[42]  J. Aarstad,et al.  Development of tourism destinations: An Integrated Multilevel Perspective , 2011 .

[43]  M. Lohmann,et al.  Future Challenges for Global Tourism , 2014 .

[44]  B. Faulkner,et al.  Katherine, washed out one day, back on track the next: a post-mortem of a tourism disaster , 2001 .

[45]  Bryan H. Farrell,et al.  Un nuevo concepto del turismo , 2004 .

[46]  David Edgar,et al.  A matter of chaos ‐ some issues for hospitality businesses , 1996 .

[47]  Rob Law,et al.  The Application of Rough Sets to Sightseeing Expenditures , 2000 .

[48]  R. Baggio Collaboration and cooperation in a tourism destination: a network science approach , 2011 .

[49]  Bruce Prideaux,et al.  Crisis Management: A Suggested Typology , 2005 .

[50]  Na Wang,et al.  Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory , 2012 .

[51]  Bernard J. Morzuch,et al.  Evaluating Time-Series Models to Forecast the Demand for Tourism in Singapore , 2005 .

[52]  Geoffrey I. Crouch,et al.  The Study of International Tourism Demand: A Review of Findings , 1994 .

[53]  Kevin K. F. Wong,et al.  Tourism forecasting: To combine or not to combine? , 2007 .

[54]  Douglas C. Frechtling,et al.  Forecasting Tourism Demand: Methods and Strategies , 2001 .

[55]  Chao Fan,et al.  Visitor flow pattern of Expo 2010 , 2012 .

[56]  L. Amaral,et al.  Duality between Time Series and Networks , 2011, PloS one.

[57]  Arch G. Woodside,et al.  General theory of cultures' consequences on international tourism behavior , 2011 .

[58]  David Timothy Duval,et al.  Critical Issues in Air Transport and Tourism , 2013 .

[59]  Dianne Dredge,et al.  Local tourism governance: a comparison of three network approaches , 2010 .

[60]  D. Getz,et al.  A network perspective on managing stakeholders for sustainable urban tourism , 2008 .

[61]  Egon Smeral Research Note: World Tourism Forecasting – Keep It Quick, Simple and Dirty , 2007 .

[62]  Ruggero Sainaghi,et al.  Complex and chaotic tourism systems: towards a quantitative approach. , 2011 .

[63]  Stephen J. Guastello,et al.  Nonlinear Dynamics of Team Performance and Adaptability in Emergency Response , 2010, Hum. Factors.

[64]  D. Pearce Toward an Integrative Conceptual Framework of Destinations , 2014 .

[65]  Roslyn Russell,et al.  Turbulence, Chaos and Complexity in tourism systems: a research direction for the new millennium , 2001 .

[66]  Lucas Lacasa,et al.  Description of stochastic and chaotic series using visibility graphs. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Martín Gómez Ravetti,et al.  Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph , 2014, PloS one.

[68]  Haiyan Song,et al.  Tourism demand modelling and forecasting—A review of recent research , 2008 .

[69]  Steven B. Andrews,et al.  Structural Holes: The Social Structure of Competition , 1995, The SAGE Encyclopedia of Research Design.

[70]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[71]  Chris Ryan,et al.  From chaos to cohesion—Complexity in tourism structures: An analysis of New Zealand's regional tourism organizations , 2007 .

[72]  S. Poukliakova,et al.  Tourism demand modelling and forecasting: modern econometric approaches , 2001 .

[73]  Ruggero Sainaghi Hotel performance: state of the art , 2010 .

[74]  Olbrich,et al.  Chaos or noise: difficulties of a distinction , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  V. Cho Tourism Forecasting and its Relationship with Leading Economic Indicators , 2001 .

[76]  B. Ritchie Chaos, crises and disasters: a strategic approach to crisis management in the tourism industry , 2004 .

[77]  Rob Law,et al.  Relationship modeling in tourism shopping: a decision rules induction approach. , 2000 .

[78]  Haiyan Song,et al.  A meta-analysis of international tourism demand forecasting and implications for practice , 2014 .

[79]  Frederick W. Cubbage,et al.  Comparing Forecasting Models in Tourism , 2008 .

[80]  Sen Cheong Kon,et al.  Neural Network Forecasting of Tourism Demand , 2005 .

[81]  Strozzi Fernanda,et al.  From Complex Networks to Time Series Analysis and Viceversa: Application to Metabolic Networks , 2009 .

[82]  José Navarro,et al.  Chaos in Human Behavior: The Case of Work Motivation , 2010, The Spanish journal of psychology.

[83]  Cynthia F. Kurtz,et al.  The new dynamics of strategy: sense-making in a complex and complicated world , 2003, IEEE Engineering Management Review.

[84]  Juan Luis Nicolau,et al.  Heckit modelling of tourist expenditure: evidence from Spain , 2005 .

[85]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[86]  Geoffrey I. Crouch,et al.  A META-ANALYSIS OF TOURISM DEMAND , 1995 .

[87]  C. Cooper,et al.  Network Science , 2010 .

[88]  R. Baggio Symptoms of complexity in a tourism system , 2007, physics/0701063.

[89]  Lucas Lacasa,et al.  Visibility Algorithms: A Short Review , 2012 .

[90]  Rob Law,et al.  Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. , 2002 .

[91]  P. Beritelli Cooperation among prominent actors in a tourist destination , 2011 .

[92]  S. Cole A LOGISTIC TOURISM MODEL: Resort Cycles, Globalization, and Chaos , 2009 .

[93]  Ruggero Sainaghi,et al.  From contents to processes: Versus a dynamic destination management model (DDMM) , 2006 .

[94]  B. Faulkner,et al.  An integrative approach to tourism demand forecasting , 1995 .

[95]  Ruggero Sainaghi,et al.  Archetypes of destination governance: a comparison of international destinations , 2010 .

[96]  R. Butler The concept of a tourist area cycle of evolution: implications for management of resources. , 1980 .

[97]  Emily A. Fogarty,et al.  Visibility network of United States hurricanes , 2009 .

[98]  R. Butler,et al.  Tourism Area Life Cycle , 2010 .

[99]  B. Faulkner,et al.  Events in Indonesia: exploring the limits to formal tourism trends forecasting methods in complex crisis situations. , 2003 .

[100]  G. Ellis Physics, complexity and causality , 2005, Nature.

[101]  G. Miller,et al.  Complexity Theory and Tourism Policy Research , 2009 .

[102]  Haiyan Song,et al.  Recent Developments in Econometric Modeling and Forecasting , 2005 .

[103]  Cristoforo Sergio Bertuglia,et al.  Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems , 2005 .

[104]  Roslyn Russell,et al.  Movers and shakers: chaos makers in tourism development , 1999 .

[105]  Stephen J. Walsh,et al.  Modelling Tourism in the Galapagos Islands: An Agent-Based Model Approach , 2014, J. Artif. Soc. Soc. Simul..

[106]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[107]  R. Baggio,et al.  Structural social capital and hotel performance: Is there a link? , 2014 .

[108]  Jinjun Tang,et al.  Characterizing traffic time series based on complex network theory , 2013 .

[109]  C. Cooper,et al.  Improving tourism destination governance: a complexity science approach , 2010 .

[110]  Chaohui Wang,et al.  Predicting tourism demand using fuzzy time series and hybrid grey theory. , 2004 .