$Z_3$ Scalar Singlet Dark Matter

We consider the minimal scalar singlet dark matter stabilised by a 3 symmetry. Due to the cubic term in the scalar potential, semi-annihilations, besides annihilations, contribute to the dark matter relic density. Unlike in the 2 case, the dark matter spin independent direct detection cross section is no more linked to the annihilation cross section. We study the extrema of the potential and show that a too large cubic term would break the 3 symmetry spontaneously, implying a lower bound on the direct detection cross section, and allowing the whole parameter space to be tested by XENON1T. In a small region of the parameter space the model can avoid the instability of the standard model vacuum up to the unification scale. If the semi-annihilations are large, however, new physics will be needed at TeV scale because the model becomes non-perturbative. The singlet dark matter mass cannot be lower than 53.8 GeV due to the constraint from Higgs boson decay into dark matter.

[1]  M. Raidal,et al.  Reconstructing Higgs boson properties from the LHC and Tevatron data , 2012, 1203.4254.

[2]  B. Grzadkowski,et al.  Erratum to: Multi-scalar-singlet extension of the standard model — The case for dark matter and an invisible Higgs boson , 2012 .

[3]  Z. Xing,et al.  Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays , 2011, 1112.3112.

[4]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[5]  The XENON1T Dark Matter Search Experiment , 2019 .

[6]  M. Raidal,et al.  Impact of semi-annihilations on dark matter phenomenology - an example of Z_N symmetric scalar dark matter , 2012, 1202.2962.

[7]  C. Weniger,et al.  Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay , 2009, 0912.4496.

[8]  V. Barger,et al.  Complex Scalar Dark Matter vis-`a-vis CoGeNT, DAMA/LIBRA and XENON100 , 2010, 1005.3328.

[9]  J. Pradler,et al.  Non-Abelian discrete dark matter , 2011, 1103.3053.

[10]  Hiren H. Patel,et al.  Vacuum stability, perturbativity, and scalar singlet dark matter , 2009, 0910.3167.

[11]  K. Schilcher,et al.  Three-loop relation of quark $$\overline {MS} $$ and pole masses , 1990 .

[12]  James T. Liu,et al.  On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N} = 2$\end{document} truncations of IIB on T1,1 , 2011, Journal of High Energy Physics.

[13]  J. McDonald,et al.  Gauge singlet scalar as inflaton and thermal relic dark matter , 2009, 0909.0520.

[14]  M. Kreps,et al.  Measurement of the fraction of Υ (1S) originating from χb(1P) decays in pp collisions at $ \sqrt{s}=7\,TeV $ , 2012, 1209.0282.

[15]  Carlos E. Yaguna,et al.  Large contributions to dark matter annihilation from three-body final states , 2010, 1003.2730.

[16]  T. Tuuva,et al.  Search for resonant $ \mathrm{t}\overline{\mathrm{t}} $ production in lepton+jets events in pp collisions at $ \sqrt{s}=7 $ TeV , 2012 .

[17]  M. Ramsey-Musolf,et al.  Complex scalar singlet dark matter: Vacuum stability and phenomenology , 2012, 1202.1316.

[18]  O. Lebedev On stability of the electroweak vacuum and the Higgs portal , 2012, 1203.0156.

[19]  D. Majumdar,et al.  Real gauge singlet scalar extension of the Standard Model: A possible candidate for cold dark matter , 2011, 1102.3024.

[20]  C. Cheung,et al.  Higgs and dark matter hints of an oasis in the desert , 2012, 1203.5106.

[21]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[22]  Yong Tang,et al.  Vacuum stability, neutrinos, and dark matter , 2012, 1202.5717.

[23]  S. Moch,et al.  The top quark and Higgs boson masses and the stability of the electroweak vacuum , 2012, 1207.0980.

[24]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[25]  S. Coleman,et al.  Erratum: Fate of the false vacuum: semiclassical theory , 1977 .

[26]  M. Kadastik,et al.  Matter parity as the origin of scalar Dark Matter , 2009, 0903.2475.

[27]  M. Kadastik,et al.  Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology , 2011, 1112.3647.

[28]  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[29]  E. Aprile,et al.  The XENON dark matter search experiment , 2004, 1206.6288.

[30]  Probing for invisible Higgs decays with global fits , 2012, 1205.6790.

[31]  A. Strumia,et al.  Higgs mass implications on the stability of the electroweak vacuum , 2011, 1112.3022.

[32]  M. Tytgat,et al.  Confined hidden vector dark matter , 2009, 0907.1007.

[33]  G. Aldazabal,et al.  U-dual fluxes and Generalized Geometry , 2010, 1007.5509.

[34]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[35]  A. A. Ocampo Rios,et al.  Measurement of the top-quark mass in $ \mathrm{t}\overline{\mathrm{t}} $ events with lepton+jets final states in pp collisions at $ \sqrt{s}=7 $ TeV , 2012 .

[36]  A. Semenov,et al.  Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..

[37]  T. Hambye,et al.  Hidden vector dark matter , 2008, 0811.0172.

[38]  Y. Mambrini Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC , 2011, 1108.0671.

[39]  Mcdonald Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[40]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[41]  M. Raidal,et al.  Is the resonance at 125 GeV the Higgs boson , 2012, 1207.1347.

[42]  Wan-lei Guo,et al.  The real singlet scalar dark matter model , 2010, 1006.2518.

[43]  Abdelhak Djouadi,et al.  Implications of LHC searches for Higgs-portal dark matter , 2011, 1112.3299.

[44]  Paul Langacker,et al.  Complex Singlet Extension of the Standard Model , 2008, 0811.0393.

[45]  A. Semenov,et al.  micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model , 2007, Comput. Phys. Commun..

[46]  J. T. Childers,et al.  Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector , 2012, Journal of High Energy Physics.

[47]  Wonwoo Lee,et al.  The fate of the false vacuum in Einstein gravity theory with nonminimally-coupled scalar field , 2005 .

[48]  Jesse Thaler,et al.  Semi-annihilation of dark matter , 2010, 1101.5413.

[49]  M. Raidal,et al.  Hints for a nonstandard Higgs boson from the LHC , 2011, 1108.4903.

[50]  M. Mühlleitner,et al.  First Glimpses at Higgs’ face , 2012, 1207.1717.

[51]  M. Lancaster Combination of CDF and D0 results on the mass of the top quark using up to 5.8~fb-1 of data , 2011 .

[52]  A. Vilenkin Cosmic Strings and Domain Walls , 1985 .

[53]  S. Profumo,et al.  Singlet scalar dark matter: Monochromatic gamma rays and metastable vacua , 2010, 1009.5377.

[54]  J. Espinosa,et al.  The lightest Higgs boson mass in the Minimal Supersymmetric Standard Model , 1995 .

[55]  Alan D. Martin,et al.  Review of Particle Physics (RPP) , 2012 .

[56]  Curtis G. Callan,et al.  Fate of the false vacuum. II. First quantum corrections , 1977 .

[57]  K. Kainulainen,et al.  Electroweak baryogenesis and dark matter from a singlet Higgs , 2012, 1210.4196.

[58]  M. Kadastik,et al.  Dark matter as the signal of grand unification , 2009, 0907.1894.

[59]  E. Ma Z3 dark matter and two-loop neutrino mass , 2007, 0708.3371.

[60]  V. Cerný,et al.  Inclusive deep inelastic scattering at high Q2 with longitudinally polarised lepton beams at HERA , 2012, 1310.0968.

[61]  S. Rosier-Lees,et al.  Indirect search for dark matter with micrOMEGAs_2.4 , 2010, Comput. Phys. Commun..

[62]  A. Strumia,et al.  Stabilization of the electroweak vacuum by a scalar threshold effect , 2012, 1203.0237.

[63]  A. Pomarol,et al.  Composite scalar dark matter , 2012, 1204.2808.

[64]  B. Kniehl,et al.  Higgs boson mass and new physics , 2012, 1205.2893.

[65]  L. A. Granado Cardoso,et al.  Measurement of b-hadron branching fractions for two-body decays into charmless charged hadrons , 2012, 1206.2794.

[66]  E Aprile,et al.  Dark matter results from 100 live days of XENON100 data. , 2011, Physical review letters.

[67]  M. Lindner,et al.  Planck scale boundary conditions and the Higgs mass , 2011, Journal of High Energy Physics.