Inkjet printing of proteins

This article presents a review of the current status of the use of inkjet technology with protein-related applications. It includes a brief history of inkjet printing, discusses the advantages of employing the technology with proteins, using a number of selected applications as illustration, and concludes with a view of future research directions.

[1]  Christian B. Anfinsen Untersuchungen über die Ursachen der Faltung von Proteinketten (Nobel-Vortrag)† , 1973 .

[2]  Jooho Moon,et al.  Influence of fluid physical properties on ink-jet printability. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[3]  Peter Andresen,et al.  Characteristics of a piezoelectric pulsed nozzle beam , 1985 .

[4]  Daan J.A. Crommelin,et al.  Methods for structural analysis of protein pharmaceuticals , 2005 .

[5]  Raymond Edwards,et al.  Immunodiagnostics : a practical approach , 1999 .

[6]  J. E. Fromm,et al.  Numerical calculation of the fluid dynamics of drop-on-demand jets , 1984 .

[7]  Gordon G. Wallace,et al.  Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles , 2005 .

[8]  Eiji Ando,et al.  Direct on-membrane peptide mass fingerprinting with MALDI-MS of tyrosine-phosphorylated proteins detected by immunostaining. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[9]  Anthony Turner,et al.  Application of dual-step potential on single screen-printed modified carbon paste electrodes for detection of amino acids and proteins , 1999 .

[10]  E. Delamarche,et al.  Microfluidics for Processing Surfaces and Miniaturizing Biological Assays , 2005 .

[11]  Philip Huie,et al.  Towards a Neurotransmitter-Based Retinal Prosthesis Using an Inkjet Print-head , 2003 .

[12]  R. Marchant,et al.  Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. , 1996, Blood.

[13]  A Alexander-Katz,et al.  Shear-flow-induced unfolding of polymeric globules. , 2006, Physical review letters.

[14]  Mar Michael Meier,et al.  Combinatorial and high-throughput approaches in polymer science , 2004 .

[15]  W. Somers,et al.  Automated systems for protein crystallization. , 2004, Methods.

[16]  Eiji Ando,et al.  Direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric identification of proteins on membrane detected by Western blotting and lectin blotting. , 2005, Journal of proteome research.

[17]  Mingjun Zhang,et al.  Bio-Microarray Fabrication Techniques—A Review , 2006, Critical reviews in biotechnology.

[18]  A. Hart,et al.  Measurement of soluble L-lactate in dairy products using screen-printed sensors in batch mode. , 1996, Biosensors & bioelectronics.

[19]  Dor Ben-Amotz,et al.  Raman detection of proteomic analytes. , 2003, Analytical chemistry.

[20]  Ulrich S. Schubert,et al.  Inkjet Printing of Polymer Micro‐Arrays and Libraries: Instrumentation, Requirements, and Perspectives , 2003 .

[21]  J. Lewis,et al.  Direct writing in three dimensions , 2004 .

[22]  A. Persidis High-throughput screening , 1998, Bio/Technology.

[23]  Mitsuaki Yanagida,et al.  Matrix assisted laser desorption/ionization‐time of flight‐mass spectrometry analysis of proteins detected by anti‐phosphotyrosine antibody on two‐dimensional‐gels of fibrolast cell lysates after tumor necrosis factor‐α stimulation , 2000 .

[24]  S. Charm,et al.  Shear Degradation of Fibrinogen in the Circulation , 1970, Science.

[25]  George S. b. Bryan Edison, the man and his work , 1926 .

[26]  B R Ringeisen,et al.  Printing of protein microarrays via a capillary‐free fluid jetting mechanism , 2005, Proteomics.

[27]  Giovanna Marrazza,et al.  INK-JET PRINTING FOR THE FABRICATION OF AMPEROMETRIC GLUCOSE BIOSENSORS , 1992 .

[28]  Bart Hazes Combinatorial dispensing as a fast and efficient means to create complex screens. , 2006, Combinatorial chemistry & high throughput screening.

[29]  Wolfgang Schuhmann,et al.  Ink‐Jet Microdispensing for the Formation of Gradients of Immobilised Enzyme Activity , 2005 .

[30]  Wen-li Wu,et al.  Nanoimprint Pattern Transfer Quality from Specular X-Ray Reflectivity , 2005 .

[31]  Mar Michael Meier,et al.  Integration of MALDI-TOFMS as high-throughput screening tool into the workflow of combinatorial polymer research , 2005 .

[32]  Urs Eppenberger,et al.  Protein chip based miniaturized assay for the simultaneous quantitative monitoring of cancer biomarkers in tissue extracts , 2006, Proteomics.

[33]  Miri Yemini,et al.  Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. , 2007, Bioelectrochemistry.

[34]  John P. Hart,et al.  Some Recent Designs and Developments of Screen‐Printed Carbon Electrochemical Sensors/Biosensors for Biomedical, Environmental, and Industrial Analyses , 2004 .

[35]  R. A. McGill,et al.  Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write , 2003 .

[36]  R E Cachau,et al.  Ink-jet printer heads for ultra-small-drop protein crystallography. , 2002, BioTechniques.

[37]  Andreas Schober,et al.  Evolution and Operating Experiences with Different Drop‐On‐Demand Systems , 2005 .

[38]  M. Mazumdar,et al.  Attempts to rationalize protein crystallization using relative crystallizability. , 2006, Journal of structural biology.

[39]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[40]  Brian Derby,et al.  Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures , 2008 .

[41]  Ronald Frank,et al.  A new compact disc format of high density array synthesis applied to peptide nucleic acids and in situ MALDI analysis , 2004, Molecular Diversity.

[42]  Richard D. LeDuc,et al.  Mass spectrometric peptide fingerprinting of proteins after Western blotting on polyvinylidene fluoride and enhanced chemiluminescence detection. , 2005, Journal of proteome research.

[43]  S. Grant,et al.  Proteomics in postgenomic neuroscience: the end of the beginning , 2004, Nature Neuroscience.

[44]  Eiji Ando,et al.  Direct MS/MS analysis of proteins blotted on membranes by a matrix-assisted laser desorption/ionization-quadrupole ion trap-time-of-flight tandem mass spectrometer. , 2005, Journal of proteome research.

[45]  Takao Someya,et al.  Organic transistors manufactured using inkjet technology with subfemtoliter accuracy , 2008, Proceedings of the National Academy of Sciences.

[46]  Baochuan Lin,et al.  A comparison of microscope slide substrates for use in transfected cell microarrays. , 2004, Biosensors & bioelectronics.

[47]  Richard A Yost,et al.  MALDI-linear ion trap microprobe MS/MS studies of the effects of dichloroacetate on lipid content of nerve tissue. , 2007, Analytical chemistry.

[48]  L. Setti,et al.  An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. , 2005, Biosensors & bioelectronics.

[49]  Anthony Turner,et al.  On the use of screen- and ink-jet printing to produce amperometric enzyme electrodes for lactate☆ , 1996 .

[50]  Kunihiro Ichimura,et al.  Integrated enzyme fets for simultaneous detections of urea and glucose , 1985 .

[51]  Andreas Manz,et al.  Holographic refractive index detector for application in microchip-based separation systems , 1998 .

[52]  A. T. Sobczyk,et al.  Electrospraying route to nanotechnology: An overview , 2008 .

[53]  J. Sumerel,et al.  Piezoelectric ink jet processing of materials for medical and biological applications. , 2006, Biotechnology journal.

[54]  Arben Merkoçi,et al.  Configurations used in the design of screen-printed enzymatic biosensors. A review , 2000 .

[55]  Vincent M. Rotello,et al.  Stabilization of α-chymotrypsin at air-water interface through surface binding to gold nanoparticle scaffolds. , 2006, Soft matter.

[56]  Dimitra N. Stratis-Cullum,et al.  Investigation of microfabrication of biological sample arrays using piezoelectric and bubble-jet printing technologies , 2004 .

[57]  Hao Shang,et al.  Nanoliter-scale reactor arrays for biochemical sensing. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[58]  A. Roda,et al.  Protein microdeposition using a conventional ink-jet printer. , 2000, BioTechniques.

[59]  D. Mooney,et al.  Hydrogels for tissue engineering: scaffold design variables and applications. , 2003, Biomaterials.

[60]  M. Wilkins,et al.  Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium , 1995, Electrophoresis.

[61]  T. Kuriyama,et al.  An immobilized enzyme membrane fabrication method using an ink jet nozzle , 1989 .

[62]  P Dunnill,et al.  Action of shear on enzymes: Studies with alcohol dehydrogenase , 1979, Biotechnology and bioengineering.

[63]  K. Prakasan,et al.  Dynamic Model for Flow and Droplet Deposition in Direct Ceramic Ink-jet Printing , 2004 .

[64]  U. Schubert,et al.  Inkjet printing of well-defined polymer dots and arrays. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[65]  Karthik Ramani,et al.  Folding considerations for therapeutic protein formulations. , 2008, Progress in molecular biology and translational science.

[66]  Peter Kuhn,et al.  A rare-cell detector for cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S N Jayasinghe,et al.  Electrohydrodynamic atomization of protein (bovine serum albumin) , 2005, Journal of materials science. Materials in medicine.

[68]  Ulrich S. Schubert,et al.  Ink-Jet Printing of Linear and Star Polymers , 2005 .

[69]  Hui Lu,et al.  Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability , 2007, Proceedings of the National Academy of Sciences.

[70]  John A Rogers,et al.  High-resolution electrohydrodynamic jet printing. , 2007, Nature materials.

[71]  Frances S Ligler,et al.  A microarray immunoassay for simultaneous detection of proteins and bacteria. , 2002, Analytical chemistry.

[72]  Heiko O. Jacobs,et al.  Printing of organic and inorganic nanomaterials using electrospray ionization and Coulomb-force-directed assembly , 2005 .

[73]  Tatsuro Nakagama,et al.  Development of a surface-reaction system in a nanoliter droplet made by an ink-jet microchip. , 2007, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[74]  H. Eickhoff,et al.  Development of a technology for automation and miniaturization of protein crystallization. , 2001, Journal of biotechnology.

[75]  C. Piana,et al.  Thermal Inkjet Technology for the Microdeposition of Biological Molecules as a Viable Route for the Realization of Biosensors , 2004 .

[76]  Katsuhiko Ariga,et al.  Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies) and their related functions. , 2006, Journal of nanoscience and nanotechnology.

[77]  A Alexander-Katz,et al.  Shear-induced unfolding triggers adhesion of von Willebrand factor fibers , 2007, Proceedings of the National Academy of Sciences.

[78]  S. Hagen,et al.  Do protein molecules unfold in a simple shear flow? , 2006, Biophysical journal.

[79]  Brian Derby,et al.  Inkjet Printing Glucose Oxidase for Biosensor Applications , 2008 .

[80]  Gary M Nishioka,et al.  Protein damage in drop-on-demand printers. , 2004, Journal of the American Chemical Society.

[81]  Thomas Laurell,et al.  Screening of nucleation conditions using levitated drops for protein crystallization. , 2003, Analytical chemistry.

[82]  G. Whitesides,et al.  Patterning proteins and cells using soft lithography. , 1999, Biomaterials.

[83]  J Rishpon,et al.  Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. , 2003, Analytical chemistry.

[84]  Matthew K. Waldor,et al.  Phages: their role in bacterial pathogenesis and biotechnology. , 2005 .

[85]  Wamadeva Balachandran,et al.  Towards particle-by-particle deposition of ceramics using electrostatic atomization , 1997 .

[86]  Ning Yan,et al.  Piezoelectric Ink‐Jet Printing of Horseradish Peroxidase: Effect of Ink Viscosity Modifiers on Activity , 2007 .

[87]  R Ekins,et al.  High specific activity chemiluminescent and fluorescent markers: their potential application to high sensitivity and 'multi-analyte' immunoassays. , 1989, Journal of bioluminescence and chemiluminescence.

[88]  M. Setou,et al.  Two-step matrix application technique to improve ionization efficiency for matrix-assisted laser desorption/ionization in imaging mass spectrometry. , 2006, Analytical chemistry.

[89]  Hisashi Narimatsu,et al.  Direct on-membrane glycoproteomic approach using MALDI-TOF mass spectrometry coupled with microdispensing of multiple enzymes. , 2007, Journal of proteome research.

[90]  R. Frank The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports--principles and applications. , 2002, Journal of immunological methods.

[91]  U. Schubert,et al.  Inkjet Printing of Polymers: State of the Art and Future Developments , 2004 .

[92]  S J Kim,et al.  A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent. , 2000, Analytical chemistry.

[93]  朱晓阳 硅表面有机单层膜 :微印章、微加工与微阵列 , 2002 .

[94]  Mar Michael Meier,et al.  Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: Past and Present , 2003 .

[95]  H. Le,et al.  Progress and Trends in Ink-jet Printing Technology , 1998, Journal of Imaging Science and Technology.

[96]  M. Setou,et al.  Direct MS/MS analysis in mammalian tissue sections using MALDI‐QIT‐TOFMS and chemical inkjet technology , 2006 .

[97]  C. Allender,et al.  Molecular imprinted polymer sensors: implications for therapeutics. , 2005, Advanced drug delivery reviews.

[98]  Richard A Yost,et al.  Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. , 2007, Analytical chemistry.

[99]  Chung C. Hsu,et al.  Effect of high shear on proteins , 2000, Biotechnology and bioengineering.

[100]  Ulrich S Schubert,et al.  Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. , 2008, Soft matter.

[101]  P Dunnill,et al.  Action of shear on enzymes: Studies with catalase and urease , 1979, Biotechnology and bioengineering.

[102]  N. Yamamoto,et al.  Microarray fabrication with covalent attachment of DNA using Bubble Jet technology , 2000, Nature Biotechnology.

[103]  Shaojun Dong,et al.  Some new aspects in biosensors. , 2002, Journal of biotechnology.

[104]  Frances S Ligler,et al.  Method for printing functional protein microarrays. , 2003, BioTechniques.

[105]  Ibtisam E. Tothill,et al.  Catalytic Materials, Membranes, and Fabrication Technologies Suitable for the Construction of Amperometric Biosensors , 1995 .