Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model.

Theoretical investigation with Monte Carlo simulations predicts that thermal spin-switching hysteresis of transition-metal complexes appears even in nanoparticles, but the hysteresis width does not depend only on the interaction strength between molecules but also strongly on the shape and size of the particles.

[1]  Osamu Sato,et al.  Control of the Magnetic and Optical Properties in Molecular Compounds by Electrochemical, Photochemical and Chemical Methods , 2003 .

[2]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[3]  Y. Moritomo,et al.  Simulations with an Ising-like Model for Dynamical Phase Transitions under Strong Excitation , 2004 .

[4]  Azzedine Bousseksou,et al.  Dynamic triggering of a spin-transition by a pulsed magnetic field , 2000 .

[5]  E. Freysz,et al.  Single laser pulse induces spin state transition within the hysteresis loop of an Iron compound , 2004 .

[6]  T. Uemura,et al.  Prussian blue nanoparticles protected by poly(vinylpyrrolidone). , 2003, Journal of the American Chemical Society.

[7]  A. Stiegman,et al.  Transparent, Superparamagnetic KCo[FeIII(CN)6]–Silica Nanocomposites with Tunable Photomagnetism , 2003 .

[8]  J. Yakhmi,et al.  Synthesis of surfactant encapsulated nickel hexacyanoferrate nanoparticles and deposition of their Langmuir-Blodgett film , 2004 .

[9]  M. Kurihara,et al.  Synthesis and isolation of cobalt hexacyanoferrate/chromate metal coordination nanopolymers stabilized by alkylamino ligand with metal elemental control. , 2004, Journal of the American Chemical Society.

[10]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[11]  T. Ohsuna,et al.  Fluorescent Property of Bulk- and Nanocrystals of Cyanide-bridged Eu(III)Co(III) Heteronuclear Coordination Polymer , 2004 .

[12]  O. Stéphan,et al.  Photomagnetic nanorods of the Mo(CN)8Cu2 coordination network. , 2005, Chemical communications.

[13]  M. Goiran,et al.  Two-level Ising-like model for spin-crossover phenomenon including the magnetic field effect: the mean-field approximation and Monte Carlo resolutions , 2003 .

[14]  K. Hashimoto,et al.  Magnetic and Mössbauer investigation of the photomagnetic Prussian blue analogue Na(0.32)Co[Fe(CN)6](0.74).3.4H2O: cooperative relaxation of the thermally quenched state. , 2005, The journal of physical chemistry. B.

[15]  Kamel Boukheddaden,et al.  Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach , 2000 .

[16]  T. Kawamoto,et al.  Photoinduced phase transition accelerated by use of two-component nanostructures: A computational study on an Ising-type model , 2003 .

[17]  H. Spiering,et al.  Monte Carlo study of the two-step spin transition in [FeXZn1∓X(2-pic)3]Cl2 · EtOH , 1997 .

[18]  Xiao-jun Liu,et al.  Dynamical Phase Transition in a Spin-Crossover Complex , 2003 .

[19]  G. Molnár,et al.  Triggering the spin-crossover of Fe(phen)2(NCS)2 by a pressure pulse. Pressure and magnetic field induce ‘mirror effects’ , 2003 .

[20]  Jean-François Létard,et al.  Towards spin crossover applications , 2004 .

[21]  E. Rivière,et al.  Cyanide‐Bridged CrIII–NiII Superparamagnetic Nanoparticles , 2003 .

[22]  J. Ding,et al.  Ultrafine magnetic cyanide particles , 2000 .

[23]  S. Mann,et al.  Molecule-Based Magnetic Nanoparticles: Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions , 2002 .

[24]  P. Gütlich,et al.  Modelling of two step high spin⇌low spin transitions using the cluster variation method , 1998 .