Certification of quantum states with hidden structure of their bitstrings

[1]  Victor V. Albert,et al.  Provably efficient machine learning for quantum many-body problems , 2021, Science.

[2]  Tom Westerhout,et al.  lattice-symmetries: A package for working with quantum many-body bases , 2021, J. Open Source Softw..

[3]  A. Pal,et al.  Simulating Hydrodynamics on Noisy Intermediate-Scale Quantum Devices with Random Circuits. , 2020, Physical review letters.

[4]  Tom Westerhout,et al.  Kinetic samplers for neural quantum states , 2020, Physical Review B.

[5]  Johnnie Gray,et al.  Efficient Quantum State Sample Tomography with Basis-Dependent Neural Networks , 2020, PRX Quantum.

[6]  Markus Heyl,et al.  Quantum entanglement recognition , 2020, Physical Review Research.

[7]  Y. Nomura,et al.  Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy , 2020, Physical Review X.

[8]  O. M. Sotnikov,et al.  Probing the topology of the quantum analog of a classical skyrmion , 2020, Physical Review B.

[9]  R. Scalettar,et al.  Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence , 2020, Physical Review A.

[10]  Shi-Ju Ran,et al.  Visualizing quantum phases and identifying quantum phase transitions by nonlinear dimensional reduction , 2020 .

[11]  R. J. Lewis-Swan,et al.  Detecting Out-of-Time-Order Correlations via Quasiadiabatic Echoes as a Tool to Reveal Quantum Coherence in Equilibrium Quantum Phase Transitions. , 2020, Physical review letters.

[12]  Chelsea X. Huang,et al.  A Habitable-zone Earth-sized Planet Rescued from False Positive Status , 2020, The Astrophysical Journal.

[13]  M. Katsnelson,et al.  Generalization properties of neural network approximations to frustrated magnet ground states , 2020, Nature Communications.

[14]  Mikhail I. Katsnelson,et al.  Multiscale structural complexity of natural patterns , 2020, Proceedings of the National Academy of Sciences.

[15]  V. Tkachuk,et al.  Detecting entanglement by the mean value of spin on a quantum computer , 2020, 2003.01011.

[16]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[17]  Jordan S. Cotler,et al.  Quantum Overlapping Tomography. , 2019, Physical review letters.

[18]  P. Zoller,et al.  Many-body topological invariants from randomized measurements in synthetic quantum matter , 2019, Science Advances.

[19]  Vladimir V. Mazurenko,et al.  Neural network agent playing spin Hamiltonian games on a quantum computer , 2019, Journal of Physics A: Mathematical and Theoretical.

[20]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[21]  Andrey Kardashin,et al.  Machine Learning Phase Transitions with a Quantum Processor , 2019, Physical Review A.

[22]  Yi Zhang,et al.  Machine learning in electronic-quantum-matter imaging experiments , 2018, Nature.

[23]  M. Danilov,et al.  Detecting quantum critical points in the $t-t'$ Fermi-Hubbard model via complex network theory , 2019, 1904.11463.

[24]  Jiangwei Shang,et al.  Efficient Verification of Dicke States , 2019, Physical Review Applied.

[25]  Michael Knap,et al.  Classifying snapshots of the doped Hubbard model with machine learning , 2018, Nature Physics.

[26]  Roger G. Melko,et al.  Reconstructing quantum states with generative models , 2018, Nature Machine Intelligence.

[27]  M. Katsnelson,et al.  Separation of conditions as a prerequisite for quantum theory , 2018, Annals of Physics.

[28]  H. Nakano,et al.  Third Boundary of the Shastry–Sutherland Model by Numerical Diagonalization , 2018, Journal of the Physical Society of Japan.

[29]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[30]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[31]  Scott Aaronson,et al.  Shadow tomography of quantum states , 2017, Electron. Colloquium Comput. Complex..

[32]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[33]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[34]  E. Demler,et al.  A cold-atom Fermi–Hubbard antiferromagnet , 2016, Nature.

[35]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[36]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[37]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[38]  R. Prevedel,et al.  Direct detection of a single photon by humans , 2016, Nature Communications.

[39]  N. Sangouard,et al.  What does it take to detect entanglement with the human eye , 2016 .

[40]  Michael E. Brown,et al.  EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM , 2016, 1601.05438.

[41]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[42]  Philippe Corboz,et al.  Tensor network study of the Shastry-Sutherland model in zero magnetic field , 2012, 1212.2983.

[43]  Takafumi J. Suzuki,et al.  Study of the Shastry Sutherland Model Using Multi-scale Entanglement Renormalization Ansatz , 2012, 1212.1999.

[44]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[45]  C. Schwemmer,et al.  Permutationally invariant quantum tomography. , 2010, Physical review letters.

[46]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[47]  M Paternostro,et al.  Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. , 2009, Physical review letters.

[48]  Sebastian Will,et al.  Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.

[49]  V. Anisimov,et al.  First-principles investigation of symmetric and antisymmetric exchange interactions of SrCu2(BO3)(2) , 2008, 0804.4771.

[50]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[51]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[52]  A. J. Scott,et al.  Hypersensitivity and chaos signatures in the quantum baker's maps , 2006, quant-ph/0606102.

[53]  I. Markov,et al.  Synthesis of quantum-logic circuits , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[54]  A. Harrow,et al.  Superdense coding of quantum states. , 2003, Physical review letters.

[55]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[56]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[57]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[58]  Edward Farhi,et al.  A Numerical Study of the Performance of a Quantum Adiabatic Evolution Algorithm for Satisfiability , 2000, ArXiv.

[59]  S. Miyahara,et al.  Superstructures at magnetization plateaus inSrCu2(BO3)2 , 2000 .

[60]  D. Baylor,et al.  Single-photon detection by rod cells of the retina , 1998 .

[61]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[62]  B. Shastry,et al.  Exact ground state of a quantum mechanical antiferromagnet , 1981 .

[63]  W. W. Peterson,et al.  Addressing for Random-Access Storage , 1957, IBM J. Res. Dev..

[64]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[65]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[66]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[67]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[68]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .