Kernel-mapped histograms of multi-scale LBPs for tree bark recognition

We propose a novel method for tree bark identification by SVM classification of feature-mapped multi-scale descriptors formed by concatenated histograms of Local Binary Patterns (LBPs). A feature map approximating the histogram intersection kernel significantly improves the methods accuracy. Contrary to common practice, we use the full 256 bin LBP histogram rather than the standard 59 bin histogram of uniform LBPs and obtain superior results. Robustness to scale changes is handled by forming multiple multi-scale descriptors. Experiments conducted on a standard dataset show 96.5% accuracy using ten-fold cross validation. Using the standard 15 training examples per class, the proposed method achieves a recognition rate of 82.5% and significantly outperforms both the state-of-the-art automatic recognition rate of 64.2% and human experts with recognition rates of 56.6% and 77.8%. Experiments on standard texture datasets confirm that the proposed method is suitable for general texture recognition.

[1]  Jiri Matas,et al.  Generation, Verification and Localization of Object Hypotheses based on Colour , 1993, BMVC.

[2]  Zheru Chi,et al.  Bark texture feature extraction based on statistical texture analysis , 2004, Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004..

[3]  Jiri Matas,et al.  Online learning of robust object detectors during unstable tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[4]  Jiří Matas,et al.  Rotational Invariants for Wide-baseline Stereo , 2002 .

[5]  Sean White,et al.  Searching the World's Herbaria: A System for Visual Identification of Plant Species , 2008, ECCV.

[6]  Jiri Matas,et al.  Contextual Junction Finder , 1992, BMVC.

[7]  Jiri Matas,et al.  Statistical Chromaticity Models for Lip Tracking with B-splines , 1997, AVBPA.

[8]  Z. Chi,et al.  Bark classification by combining grayscale and binary texture features , 2004, Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004..

[9]  Stepán Obdrzálek,et al.  Image Retrieval Using Local Compact DCT-Based Representation , 2003, DAGM-Symposium.

[10]  Stepán Obdrzálek,et al.  Local affine frames for wide-baseline stereo , 2002, Object recognition supported by user interaction for service robots.

[11]  Jiri Matas,et al.  Colour-based object recognition for video annotation , 2002, Object recognition supported by user interaction for service robots.

[12]  Jiri Matas,et al.  Learning Efficient Linear Predictors for Motion Estimation , 2006, ICVGIP.

[13]  Shaogang Gong,et al.  Audio- and Video-based Biometric Person Authentication , 1997, Lecture Notes in Computer Science.

[14]  Stepán Obdrzálek,et al.  Object Recognition using Local Affine Frames on Distinguished Regions , 2002, BMVC.

[15]  Josef Kittler,et al.  Robust recognition of calibration charts , 1997 .

[16]  Jiri Matas,et al.  The Multimodal Neighborhood Signature for Modeling Object Color Appearance and Applications in Object Recognition and Image Retrieval , 2002, Comput. Vis. Image Underst..

[17]  Jiri Matas,et al.  Illumination Invariant Colour Recognition , 1994, BMVC.

[18]  Sören Sonnenburg,et al.  Optimized cutting plane algorithm for support vector machines , 2008, ICML '08.

[19]  Jiri Matas,et al.  Anytime learning for the NoSLLiP tracker , 2009, Image Vis. Comput..

[20]  Jiri Matas,et al.  Saliency-Based Robust Correlation for Real-Time Face Registration and Verification , 1998, BMVC.

[21]  Stepán Obdrzálek,et al.  Local Affine Frames for Image Retrieval , 2002, CIVR.

[22]  Matti Pietikäinen,et al.  Rotation-invariant texture classification using feature distributions , 2000, Pattern Recognit..

[23]  P. Hopke,et al.  Improvement of the homogeneous nucleation rate measurements in a static diffusion chamber with use of a CCD camera , 2001 .

[24]  Gaurav Sharma,et al.  Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis , 2012, ECCV.

[25]  Jiri Matas,et al.  Illumination invariant object recognition using the MNS method , 2000, 2000 10th European Signal Processing Conference.

[26]  Jiri Matas,et al.  Scene interpretation module for an active vision system , 1993, Other Conferences.

[27]  Jiri Matas,et al.  Hypothesis selection for scene interpretation using grammatical models of scene evolution , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[28]  C. Iordanoglou,et al.  Wearable face recognition aid , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[29]  W. John Kress,et al.  Leafsnap: A Computer Vision System for Automatic Plant Species Identification , 2012, ECCV.

[30]  Hongping Cai,et al.  Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Jiri Matas,et al.  Constraining visual expectations using a grammar of scene events , 1995 .

[32]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[33]  Jiri Matas,et al.  Efficient Symmetry Detection Using Local Affine Frames , 2007, SCIA.

[34]  Jiri Matas,et al.  Learning Parameters of a Recognition System Based on Local Affine Frames , 2002 .

[35]  Dmitry Chetverikov,et al.  Periodic Textures as Distinguished Regions for Wide-Baseline Stereo Correspondence , 2002 .

[36]  Jiri Matas,et al.  Junction detection using probabilistic relaxation , 1993, Image Vis. Comput..

[37]  Erkki Oja,et al.  Reduced Multidimensional Co-Occurrence Histograms in Texture Classification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Jiri Matas,et al.  Recognition using labelled objects , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[39]  Michal Perdoch,et al.  Efficient sequential correspondence selection by cosegmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Jiri Matas,et al.  Randomized RANSAC with Td, d test , 2004, Image Vis. Comput..

[41]  Stepán Obdrzálek,et al.  Stable Affine Frames on Isophotes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[42]  Jiri Matas,et al.  Colour-based Image Retrieval from Video Sequences , 2000 .

[43]  Jiri Matas,et al.  Evaluating Colour-Based Object Recognition Algorithms Using the SOIL-47 Database , 2002 .

[44]  Jiri Matas,et al.  Colour-based object recognition , 1995 .

[45]  Jiri Matas,et al.  Discontinuity detection on industrial parts: Real time image segmentation using Parzen's kernel , 2002 .

[46]  Matti Pietikäinen,et al.  Multi-scale Binary Patterns for Texture Analysis , 2003, SCIA.

[47]  Jiri Matas,et al.  Unifying view for wide-baseline stereo , 2001 .

[48]  Jiri Matas,et al.  Ultra-fast tracking based on zero-shift points , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[49]  Jiri Matas,et al.  On Matching Scores for LDA-based Face Verification , 2000, BMVC.

[50]  J. Matasetal Comparison of Face Verification Results on the XM2VTS Database , 2000 .

[51]  Shengcai Liao,et al.  Learning Multi-scale Block Local Binary Patterns for Face Recognition , 2007, ICB.

[52]  Jiri Matas,et al.  On Computing the Next Look Camera Parameters in Active Vision , 1992, ECAI.

[53]  Jiri Matas,et al.  Using gradient information to enhance the progressive probabilistic Hough transform , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[54]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[55]  Z. Chi,et al.  Plant species recognition based on bark patterns using novel Gabor filter banks , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[56]  Josef Kittler,et al.  Discriminative Regions for Human Face Detection , 2001 .

[57]  O. Chum,et al.  Geometric min-Hashing: Finding a (thick) needle in a haystack , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Jiri Matas,et al.  Model acquisition and matching in tagged object recognition (TOR) , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[59]  Jiri Matas,et al.  Progressive Probabilistic Hough Transform , 1998, BMVC.

[60]  Jiri Matas,et al.  Gradient based progressive probabilistic Hough transform , 2001 .

[61]  Jiri Matas,et al.  Low-level Grouping of Straight Line Segments , 1991, BMVC.

[62]  Jiri Matas,et al.  Progressive probabilistic Hough transform for line detection , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[63]  Jiri Matas,et al.  Lip-shape Dependent Face Verification , 1997, AVBPA.

[64]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[65]  Jiri Matas,et al.  A system for real-time detection and tracking of vehicles from a single car-mounted camera , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[66]  Jiri Matas,et al.  Camera control for establishing the current and next-look direction in an active vision object recognition system , 1995 .

[67]  Jiri Matas,et al.  Learning Salient Features for Real-Time Face Verification , 1999 .

[68]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Jiri Matas,et al.  Using grammars for scene interpretation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[70]  Jiri Matas,et al.  Image interpretation: exploiting multiple cues , 1995 .

[71]  Jiri Matas,et al.  Definition of a Model-Based Detector of Curvilinear Regions , 2007, CAIP.

[72]  Matti Pietikäinen,et al.  RLBP: Robust Local Binary Pattern , 2013, BMVC.

[73]  R. Sablatnig,et al.  Automated identification of tree species from images of the bark , leaves and needles , 2010 .

[74]  Jiri Matas,et al.  Combining Evidence in Multimodal Personal Identity Recognition Systems , 1997, AVBPA.

[75]  Jiri Matas,et al.  The multimodal signature method: an efficiency and sensitivity study , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[76]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[77]  Stepán Obdrzálek,et al.  A voting strategy for visual ego-motion from stereo , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[78]  Jiri Matas,et al.  Audio-visual person verification , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[79]  Jean-Philippe Thiran,et al.  The BANCA Database and Evaluation Protocol , 2003, AVBPA.

[80]  Jiri Matas,et al.  Selection of speaker independent feature for a speaker verification system , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[81]  Josef Kittler,et al.  Control in the bootstrap phase of a computer vision system , 1992 .

[82]  Jiri Matas,et al.  Combining evidence in personal identity verification systems , 1997, Pattern Recognit. Lett..

[83]  Jiri Matas,et al.  Face Verification via ECOC , 2001, BMVC.

[84]  Samy Bengio,et al.  Experimental Protocol on the BANCA Database , 2002 .

[85]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[86]  Jiri Matas,et al.  Fast face localisation and verification , 1999, Image Vis. Comput..

[87]  Jiri Matas,et al.  Colour Image Retrieval and Object Recognition Using the Multimodal Neighbourhood Signature , 2000, ECCV.

[88]  Jiri Matas,et al.  Recognition of Cylindrical Objects Using Occluding Boundaries Obtained from Colour Based Segmentation , 1994, BMVC.

[89]  Anastasios Tefas,et al.  Multi modal verification for teleservices and security applications (M2VTS) , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[90]  Hsuan-Tien Lin,et al.  A note on Platt’s probabilistic outputs for support vector machines , 2007, Machine Learning.

[91]  Jiri Matas,et al.  Using periodic texture as a tool for wide-baseline stereo , 2002 .

[92]  Jiri Matas,et al.  Tracking by an Optimal Sequence of Linear Predictors , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Jiri Matas,et al.  Object-detection with a varying number of eigenspace projections , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[94]  On the Interaction between Object Recognition and Colour Constancy , 2003 .

[95]  Jiri Matas,et al.  Intentional control of camera look direction and viewpoint in an active vision system , 1995, Image Vis. Comput..

[96]  Jiri Matas,et al.  XM2VTSDB: The Extended M2VTS Database , 1999 .

[97]  Jiri Matas,et al.  On Camera Calibration for Scene Model Acquisition and Maintenance Using an Active Vision System , 1999, ICVS.

[98]  Jiri Matas,et al.  Learning support vectors for face verification and recognition , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[99]  Jiri Matas,et al.  Techniques for the interpretation of thermal paint coated samples , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[100]  Jiri Matas,et al.  On representation and matching of multi-coloured objects , 1995, Proceedings of IEEE International Conference on Computer Vision.

[101]  P. Doubek Detection of 2D Lattice Patterns of Repetitive Elements and their Use for Image Retrieval , 2009 .

[102]  Jiri Matas,et al.  Distinguished Regions for Wide-baseline Stereo , 2001 .

[103]  Jiri Matas,et al.  Efficient representation of local geometry for large scale object retrieval , 2009, CVPR.

[104]  Jiri Matas,et al.  Estimation of Curvature and Tangent Direction by Median Filtered Differencing , 1995, ICIAP.

[105]  Jiri Matas,et al.  Empirical evaluation of a calibration chart detector , 2001, Machine Vision and Applications.

[106]  Matti Pietikäinen,et al.  Rotation-Invariant Image and Video Description With Local Binary Pattern Features , 2012, IEEE Transactions on Image Processing.

[107]  Jiri Matas,et al.  Linear Predictors for Fast Simultaneous Modeling and Tracking , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[108]  Jiri Matas,et al.  Object recognition using a tag , 1997, Proceedings of International Conference on Image Processing.

[109]  Jiri Matas,et al.  Control of Scene Interpretation , 1995 .

[110]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[111]  Jiřı́ Matas,et al.  Real-time scene text localization and recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[112]  Petr B́ılek,et al.  Illumination Independent Object Recognition : A survey Petr B́ılek , 2001 .

[113]  J. Kittler,et al.  Performance Evaluation of the Multi-modal Neighbourhood Signature Method for Colour Object Recognition , 2000 .

[114]  Jiri Matas,et al.  Support vector machines for face authentication , 2002, Image Vis. Comput..

[115]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[116]  Zhi-Kai Huang,et al.  Bark Classification Based on Textural Features Using Artificial Neural Networks , 2006, ISNN.

[117]  Jiri Matas,et al.  Statistical chromaticity-based lip tracking with B-splines , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[118]  Jiri Matas,et al.  Improved Sampling Method for Ransac and Rht , 2022 .

[119]  Jiri Matas,et al.  Face verification using error correcting output codes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[120]  Jiri Matas,et al.  Acquisition of a Large Database for Biometric Identity Verification , 1998 .

[121]  Jiri Matas,et al.  Spatial and Feature Space Clustering: Applications in Image Analysis , 1995, CAIP.

[122]  Jiri Matas,et al.  Active recovery of the intrinsic parameters of a camera , 1998 .

[123]  Jiri Matas,et al.  Face Detection by Learned Affine Correspondences , 2002, SSPR/SPR.

[124]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[125]  Jiri Matas,et al.  Colour-based object recognition under spectrally non-uniform illumination , 1995, Image Vis. Comput..

[126]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[127]  Jiri Matas,et al.  Learning Fast Emulators of Binary Decision Processes , 2009, International Journal of Computer Vision.

[128]  Jiri Matas,et al.  Effective Implementation of Linear Discriminant Analysis for Face Recognition and Verification , 1999, CAIP.

[129]  Jiri Matas,et al.  Object Recognition using the Invariant Pixel-Set Signature , 2000, BMVC.

[130]  Jiri Matas,et al.  Robust Detection of Lines Using the Progressive Probabilistic Hough Transform , 2000, Comput. Vis. Image Underst..