Cylindrical electromagnetic external cloak with only axial material parameter spatially variant

Electromagnetic external cloak is an important device, which can make an object outside its domain invisible, meanwhile the object can exchange information with the outer region. Based on optical transformation method, we design a simplified cylindrical electromagnetic external cloak with only axial material parameter spatially variant in this paper. The general expressions of material parameters are derived, and then the performance of the external cloak is simulated using the full wave simulations. The advantage of this external cloak is that transverse material parameters are constants, which makes it easier to realize with two-dimensional metamaterials. Besides, the effects of loss and perturbations of parameters on the performance of the cloak are also investigated. This work provides a feasible way for the fabrication of the metamaterial-assisted external cloak.

[1]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[3]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[4]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[5]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[7]  U. Chettiar,et al.  Nonmagnetic cloak with minimized scattering , 2007 .

[8]  T. Cui,et al.  Arbitrarily elliptical–cylindrical invisible cloaking , 2008 .

[9]  S. Tretyakov,et al.  A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects , 2008, 0805.4055.

[10]  C. Li,et al.  Two-dimensional electromagnetic cloaks with arbitrary geometries. , 2008, Optics express.

[11]  T. Tyc,et al.  Broadband Invisibility by Non-Euclidean Cloaking , 2009, Science.

[12]  S. Tretyakov,et al.  Electromagnetic cloaking with metamaterials , 2009 .

[13]  T. Cui,et al.  Anisotropic metamaterial devices , 2009 .

[14]  Tungyang Chen,et al.  Invisibility cloak with a twin cavity. , 2009, Optics express.

[15]  Huanyang Chen,et al.  Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. , 2008, Physical review letters.

[16]  Jingjing Yang,et al.  Metamaterial electromagnetic concentrators with arbitrary geometries. , 2009, Optics express.

[17]  T. Cui,et al.  A class of line-transformed cloaks with easily realizable constitutive parameters , 2009, 0910.2283.

[18]  D. Werner,et al.  Transformation Electromagnetics: An Overview of the Theory and Applications , 2010, IEEE Antennas and Propagation Magazine.

[19]  Jiafu Wang,et al.  Area-transformation method for designing invisible cloaks , 2010 .

[20]  Broadband cloaking using composite dielectrics , 2011 .

[21]  Jingjing Yang,et al.  Transparent device with homogeneous material parameters , 2011 .

[22]  Jingjing Yang,et al.  An external cloak with arbitrary cross section based on complementary medium and coordinate transformation. , 2011, Optics express.