Load partitioning during compressive loading of a Mg/MgB2 composite

[1]  Mark R. Daymond,et al.  Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel , 2007 .

[2]  B. Clausen,et al.  Load sharing in tungsten fiber reinforced Kanthal composites , 2006 .

[3]  S. Okur,et al.  Electrical and mechanical properties of superconducting MgB2/Mg metal matrix composites , 2006 .

[4]  D. Dunand,et al.  Load partitioning in aluminum syntactic foams containing ceramic microspheres , 2006 .

[5]  W. MoberlyChan,et al.  The Effect of Dopant Additions on the Microstructure of Boron Fibers Before and After Reaction to MgB2 , 2005 .

[6]  Kamel Fezzaa,et al.  Metrology of steel micronozzles using x-ray propagation-based phase-enhanced microimaging , 2005 .

[7]  C. Tomé,et al.  Internal strain and texture evolution during deformation twinning in magnesium , 2005 .

[8]  U. Lienert,et al.  The use of high energy X-rays from the Advanced Photon Source to study stresses in materials , 2005 .

[9]  J. Hanan,et al.  Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading , 2005 .

[10]  S. Agnew,et al.  Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B , 2005 .

[11]  M. Preuss,et al.  The effect of fibre fractures in the bridging zone of fatigue cracked Ti–6Al–4V/SiC fibre composites , 2004 .

[12]  D. Dunand,et al.  Elasto-plastic load transfer in bulk metallic glass composites containing ductile particles , 2003 .

[13]  F De Carlo,et al.  Multiple microscopy modalities applied to a sea urchin tooth fragment. , 2003, Journal of synchrotron radiation.

[14]  Dean R. Haeffner,et al.  Microscale damage evolution and stress redistribution in Ti-SiC fiber composites , 2003 .

[15]  H. Emerich,et al.  Thermal expansion and phase purity of commercial MgB2 , 2003 .

[16]  Bjørn Clausen,et al.  Compressive yielding of tungsten fiber reinforced bulk metallic glass composites , 2003 .

[17]  D. Dunand,et al.  In situ synthesis of superconducting MgB2 fibers within a magnesium matrix , 2003 .

[18]  R. Peng,et al.  Strain and texture analysis of coatings using high-energy x-rays , 2003 .

[19]  K. Salama,et al.  High critical current density in iron-clad MgB2 tapes , 2003 .

[20]  G. Gu,et al.  High critical-current density in robust MgB2/Mg nanocomposites , 2003 .

[21]  D. Dunand,et al.  Diffraction strain measurements in a partially crystallized bulk metallic glass composite containing ductile particles , 2003 .

[22]  M. Preuss,et al.  X‐ray tomographic imaging of Ti/SiC composites , 2003, Journal of microscopy.

[23]  V. Nesterenko,et al.  Elastic properties of hot-isostatically-pressed magnesium diboride , 2002, cond-mat/0212585.

[24]  Dian‐sen Li,et al.  Microstructural studies of in-situ formed MgB2 phases in a Mg alloy matrix composite , 2002 .

[25]  M. Preuss,et al.  SiC single fibre full-fragmentation during straining in a Ti–6Al–4V matrix studied by synchrotron X-rays , 2002 .

[26]  D. Dunand Synthesis of superconducting Mg/MgB2 composites , 2001 .

[27]  E. Maire,et al.  Recent results on 3D characterisation of microstructure and damage of metal matrix composites and a metallic foam using X-ray tomography , 2001 .

[28]  D. Larbalestier,et al.  High-Tc superconducting materials for electric power applications , 2001, Nature.

[29]  H. Suo,et al.  Large transport critical currents in dense Fe- and Ni-clad MgB2 superconducting tapes , 2001, cond-mat/0106341.

[30]  S. Dou,et al.  Very fast formation of superconducting MgB2/Fe wires with high Jc , 2001, cond-mat/0106148.

[31]  K. Togano,et al.  High transport critical current density obtained for powder-in-tube-processed MgB2 tapes and wires using stainless steel and Cu–Ni tubes , 2001, cond-mat/0106002.

[32]  R. V. Dover,et al.  High critical currents in iron-clad superconducting MgB2 wires , 2001, Nature.

[33]  Yunhua Shi,et al.  Superconductivity of powder-in-tube MgB2 wires , 2001 .

[34]  J. E. Cooper,et al.  RAPID COMMUNICATION: High intergranular critical currents in metallic MgB2 superconductor , 2001 .

[35]  A. Malagoli,et al.  Large transport critical currents in unsintered MgB2 superconducting tapes , 2001, cond-mat/0103563.

[36]  D. Hinks,et al.  Lattice properties of MgB 2 versus temperature and pressure , 2001, cond-mat/0103069.

[37]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[38]  P. Canfield,et al.  Superconductivity in dense MgB2 wires. , 2001, Physical review letters.

[39]  R. Cava,et al.  Strongly linked current flow in polycrystalline forms of the superconductor MgB2 , 2001, Nature.

[40]  P. Withers,et al.  A synchrotron X-ray study of a Ti/SiCf composite during in situ straining , 2001 .

[41]  Mark R. Daymond,et al.  Elastic phase-strain distribution in a particulate-reinforced metal-matrix composite deforming by slip or creep , 1999 .

[42]  David C. Dunand,et al.  Phase fraction, texture and strain evolution in superelastic NiTi and NiTi–TiC composites investigated by neutron diffraction , 1999 .

[43]  Philip J. Withers,et al.  Mapping two-dimensional state of strain using synchroton X-ray diffraction , 1998 .

[44]  A. Wanner Elastic modulus measurements of extremely porous ceramic materials by ultrasonic phase spectroscopy , 1998 .

[45]  Françoise Peyrin,et al.  Observation of microstructure and damage in materials by phase sensitive radiography and tomography , 1997 .

[46]  V. G. Kohn,et al.  Phase-contrast microtomography with coherent high-energy synchrotron x rays , 1996 .

[47]  J. Roberts,et al.  NiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery , 1996 .

[48]  P. Cloetens,et al.  Phase objects in synchrotron radiation hard x-ray imaging , 1996 .

[49]  E. G. Wolff,et al.  An introduction to metal matrix composites , 1995 .

[50]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[51]  J. Blucher Discussion of a liquid metal pressure infiltration process to produce metal matrix composites , 1992 .

[52]  N. Ramakrishnan,et al.  Effective elastic moduli of porous solids , 1990 .

[53]  J. Cohen,et al.  Residual Stress: Measurement by Diffraction and Interpretation , 1987 .

[54]  C. Li,et al.  Composite Materials (I) , 1975 .

[55]  A. Winston,et al.  Magnesium and Its Alloys , 1927 .

[56]  G. Giunchi,et al.  Analysis of the minority crystalline phases in bulk superconducting MgB2 obtained by reactive liquid Mg infiltration , 2006 .

[57]  X. H. Liu,et al.  Fabrication and superconducting properties of MgB2 composite wiresby the PIT method , 2001 .

[58]  D. Dunand,et al.  Methodological aspects of the high-energy synchrotron x-ray diffraction technique for internal stress evaluation , 2001 .

[59]  A. K. Pradhan,et al.  Fabrication and superconducting properties of MgB2 composite wiresby the PIT method , 2001 .

[60]  B A Glowacki,et al.  Superconductivity of powder-in-tube MgB2 wires , 2001 .

[61]  M Kambara,et al.  High intergranular critical currents in metallic MgB2 superconductor , 2001 .

[62]  D. Dunand,et al.  Synchrotron X-ray study of bulk lattice strains in externally loaded Cu-Mo composites , 2000 .

[63]  S. R. Stock,et al.  X-ray microtomography of materials , 1999 .

[64]  Mark Kachanov,et al.  On the effective moduli of solids with cavities and cracks , 1993, International Journal of Fracture.

[65]  R. Cahn,et al.  Materials science and engineering , 2023, Nature.

[66]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[67]  J. L. Haughlinton,et al.  Magnesium and its alloys , 1937 .