On solution-free sets of integers II

Given a linear equation L, a set A ⊆ [n] is L-free if A does not contain any ‘non-trivial’ solutions to L. We determine the precise size of the largest L-free subset of [n] for several general classes of linear equations L of the form px+ qy = rz for fixed p, q, r ∈ N where p ≥ q ≥ r. Further, for all such linear equations L, we give an upper bound on the number of maximal L-free subsets of [n]. In the case when p = q ≥ 2 and r = 1 this bound is exact up to an error term in the exponent. We make use of container and removal lemmas of Green [12] to prove this result. Our results also extend to various linear equations with more than three variables. MSC2010: 11B75, 05C69.

[1]  Maryam Sharifzadeh,et al.  Sharp bound on the number of maximal sum-free subsets of integers , 2018, Journal of the European Mathematical Society.

[2]  Guy Wolfovitz Bounds on the number of maximal sum-free sets , 2009, Eur. J. Comb..

[3]  Daniel J. Kleitman,et al.  On the number of graphs without 4-cycles , 1982, Discret. Math..

[4]  B. Green A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.

[5]  József Balogh,et al.  The number of maximal sum-free subsets of integers , 2014 .

[6]  J'ozsef Balogh,et al.  The number of the maximal triangle‐free graphs , 2014, 1409.8123.

[7]  K. F. Roth On Certain Sets of Integers , 1953 .

[8]  P. Ebdos,et al.  ON A PROBLEM OF SIDON IN ADDITIVE NUMBER THEORY, AND ON SOME RELATED PROBLEMS , 2002 .

[9]  Imre Z. Ruzsa,et al.  Solving a linear equation in a set of integers I , 1993 .

[10]  Andreas Baltz,et al.  The Structure of Maximum Subsets of {1, ..., n} with No Solutions to a+b = kc , 2005, Electron. J. Comb..

[11]  Richard Mollin,et al.  On the Number of Sets of Integers With Various Properties , 1990 .

[12]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[13]  Ben Green The Cameron–Erdős Conjecture , 2003 .

[14]  D. Král,et al.  A removal lemma for systems of linear equations over finite fields , 2008, 0809.1846.

[15]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[16]  D. J. Kleitman,et al.  The Asymptotic Number of Lattices , 1980 .

[17]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[18]  Andrew Treglown,et al.  On solution-free sets of integers , 2017, Eur. J. Comb..

[19]  Paul Erdös,et al.  Notes on Sum-Free and Related Sets , 1999 .

[20]  J. Balogh,et al.  THE TYPICAL STRUCTURE OF MAXIMAL TRIANGLE-FREE GRAPHS , 2015, Forum of Mathematics, Sigma.

[21]  Karl Dilcher,et al.  On finite pattern-free sets of integers , 2006 .

[22]  Tomasz Schoen,et al.  On the number of maximal sum-free sets , 2000 .

[23]  Peter Hegarty Extremal Subsets of {1, ..., n} Avoiding Solutions to Linear Equations in Three Variables , 2007, Electron. J. Comb..