Role of invariant and minimal absorbing areas in chaos synchronization
暂无分享,去创建一个
[1] A. Ferretti,et al. A study of coupled logistic map and its applications in chemical physics , 1988 .
[2] I. Stewart,et al. Bubbling of attractors and synchronisation of chaotic oscillators , 1994 .
[3] Yuri Maistrenko,et al. An introduction to the synchronization of chaotic systems: coupled skew tent maps , 1997 .
[4] C. Mira,et al. Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .
[5] H. Fujisaka,et al. Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .
[6] Grebogi,et al. Noise-Induced Riddling in Chaotic Systems. , 1996, Physical review letters.
[7] Christian Mira,et al. Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .
[8] E. Ott,et al. Blowout bifurcations: the occurrence of riddled basins and on-off intermittency , 1994 .
[9] I. Stewart,et al. From attractor to chaotic saddle: a tale of transverse instability , 1996 .
[10] Laura Gardini,et al. A DOUBLE LOGISTIC MAP , 1994 .
[11] Grebogi,et al. Riddling Bifurcation in Chaotic Dynamical Systems. , 1996, Physical review letters.
[12] Tomasz Kapitaniak,et al. LOCALLY AND GLOBALLY RIDDLED BASINS IN TWO COUPLED PIECEWISE-LINEAR MAPS , 1997 .
[13] Christian Mira,et al. Chaos In Discrete Dynamical Systems , 1997 .
[14] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[15] Erik Mosekilde,et al. Role of the Absorbing Area in Chaotic Synchronization , 1998 .
[16] Ott,et al. Transitions to Bubbling of Chaotic Systems. , 1996, Physical review letters.
[17] P. Grassberger,et al. Symmetry breaking bifurcation for coupled chaotic attractors , 1991 .
[18] Christian Mira,et al. Some Properties of a Two-Dimensional Piecewise-Linear Noninvertible Map , 1996 .
[19] James A. Yorke,et al. Analysis of a procedure for finding numerical trajectories close to chaotic saddle hyperbolic sets , 1991, Ergodic Theory and Dynamical Systems.
[20] J. Milnor. On the concept of attractor , 1985 .
[21] J. Eckmann,et al. Iterated maps on the interval as dynamical systems , 1980 .
[22] E. Mosekilde,et al. TRANSVERSE INSTABILITY AND RIDDLED BASINS IN A SYSTEM OF TWO COUPLED LOGISTIC MAPS , 1998 .
[23] Ying-Cheng Lai,et al. Periodic-orbit theory of the blowout bifurcation , 1997 .
[24] J. Yorke,et al. Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .