Distance spectra and performance bounds of space-time trellis codes over quasistatic fading channels

This correspondence presents a general approach to upper bounding coded system performance over quasistatic fading channels (QSFC). This approach has the advantage of yielding a closed-form upper bound that converge for all signal-to-noise ratios (SNRs). The proposed approach is used to upper-bound the performance of space-time trellis codes (STTC) over QSFCs. The resulting upper bounds for STTCs are better adapted to the QSFC and present an improvement over worst case pairwise error probability (PEP) analysis used so far. In its second part, this correspondence investigates several ways to reduce the complexity of computing the distance spectrum of STTCs. The combined result obtained from using the new upper bounds and the computed distance spectra are shown to be close to simulated performance for all SNRs.

[1]  Gordon L. Stüber Principles of mobile communication , 1996 .

[2]  Michael P. Fitz,et al.  Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels , 1999, IEEE Trans. Commun..

[3]  Hesham El Gamal,et al.  On the theory of space-time codes for PSK modulation , 2000, IEEE Trans. Inf. Theory.

[4]  Gerhard Bauch,et al.  Improved codes for space-time trellis-coded modulation , 2000, IEEE Communications Letters.

[5]  Dariush Divsalar,et al.  Upper bounds to error probabilities of coded systems over AWGN and fading channels , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[6]  A. Wittneben,et al.  A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[7]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.

[8]  Giuseppe Caire,et al.  Upper bound on the frame error probability of terminated trellis codes , 1998, IEEE Communications Letters.

[9]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[10]  Michael P. Fitz,et al.  Distance spectrum analysis of space-time trellis-coded Modulations in quasi-static Rayleigh-fading channels , 2003, IEEE Trans. Inf. Theory.

[11]  Zhiyuan Yan,et al.  Improved 8- and 16-state space-time codes for 4PSK with two transmit antennas , 2001, IEEE Communications Letters.

[12]  Scott L. Miller,et al.  Space-time code performance analysis for quasi-static fading channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[13]  Andrej Stefanov,et al.  Performance bounds for space-time trellis codes , 2003, IEEE Trans. Inf. Theory.

[14]  Rick S. Blum,et al.  Optimum space-time convolutional codes , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[15]  A. Robert Calderbank,et al.  Space-time block coding for wireless communications: performance results , 1999, IEEE J. Sel. Areas Commun..

[16]  Harry Leib,et al.  Evaluating the performance of convolutional codes over block fading channels , 1999, IEEE Trans. Inf. Theory.

[17]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[18]  D. K. Aktas The distance spectrum of space-time trellis coded modulations in quasi-static Rayleigh fading channels , 2000 .

[19]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[20]  Tolga M. Duman,et al.  Performance analysis of space-time trellis codes over quasi-static fading channels , 2001, SPIE ITCom.

[21]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.