Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging

Semiconductor quantum dots (QDs) are brightly luminescent nanoparticles that have found numerous applications in bioanalysis and bioimaging. In this review, we highlight recent developments in these areas in the context of specific methods for fluorescence spectroscopy and imaging. Following a primer on the structure, properties, and biofunctionalization of QDs, we describe select examples of how QDs have been used in combination with steady-state or time-resolved spectroscopic techniques to develop a variety of assays, bioprobes, and biosensors that function via changes in QD photoluminescence intensity, polarization, or lifetime. Some special attention is paid to the use of Forster resonance energy transfer-type methods in bioanalysis, including those based on bioluminescence and chemiluminescence. Direct chemiluminescence, electrochemiluminescence, and charge transfer quenching are similarly discussed. We further describe the combination of QDs and flow cytometry, including traditional cellular analyses and spectrally encoded barcode-based assay technologies, before turning our attention to enhanced fluorescence techniques based on photonic crystals or plasmon coupling. Finally, we survey the use of QDs across different platforms for biological fluorescence imaging, including epifluorescence, confocal, and two-photon excitation microscopy; single particle tracking and fluorescence correlation spectroscopy; super-resolution imaging; near-field scanning optical microscopy; and fluorescence lifetime imaging microscopy. In each of the above-mentioned platforms, QDs provide the brightness needed for highly sensitive detection, the photostability needed for tracking dynamic processes, or the multiplexing capacity needed to elucidate complex systems. There is a clear synergy between advances in QD materials and spectroscopy and imaging techniques, as both must be applied in concert to achieve their full potential.

[1]  David N. Reinhoudt,et al.  Photoluminescence Quenching of CdSe/ZnS Quantum Dots by Molecular Ferrocene and Ferrocenyl Thiol Ligands , 2009 .

[2]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[3]  Alf Mews,et al.  Synthesis and Characterization of Highly Luminescent CdSe—Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. , 2005 .

[4]  Jiye Cai,et al.  Nanoscale organization of CD4 molecules of human T helper cell mapped by NSOM and quantum dots. , 2008, Scanning.

[5]  Igor L. Medintz,et al.  Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly. , 2010, Bioconjugate chemistry.

[6]  Igor L. Medintz,et al.  Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. , 2010, Nature materials.

[7]  Shuming Nie,et al.  Counting single native biomolecules and intact viruses with color-coded nanoparticles. , 2006, Analytical chemistry.

[8]  Tony Yuen,et al.  Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization , 2005, Nucleic acids research.

[9]  G. Eda,et al.  Graphene oxide as a chemically tunable platform for optical applications. , 2010, Nature chemistry.

[10]  Hong Ding,et al.  In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. , 2011, ACS nano.

[11]  Ulrich J Krull,et al.  Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. , 2010, Analytica chimica acta.

[12]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[13]  Robert M Dickson,et al.  Highly fluorescent noble-metal quantum dots. , 2007, Annual review of physical chemistry.

[14]  Megan L Blades,et al.  Three-color fluorescence cross-correlation spectroscopy for analyzing complex nanoparticle mixtures. , 2012, Analytical chemistry.

[15]  Ming‐Yong Han,et al.  Composition-tunable alloyed semiconductor nanocrystals. , 2010, Accounts of chemical research.

[16]  Victor I Klimov,et al.  Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes. , 2006, Journal of the American Chemical Society.

[17]  T. Lian,et al.  Photoinduced ultrafast electron transfer from CdSe quantum dots to Re-bipyridyl complexes. , 2008, Journal of the American Chemical Society.

[18]  A. J. McQuillan,et al.  Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents: Solvent's Role in Evolution of the Optical and Structural Properties , 2007 .

[19]  Moungi G. Bawendi,et al.  Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Baokang Jin,et al.  Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. , 2012, Biosensors & bioelectronics.

[21]  C. Galland,et al.  Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots , 2011, Nature.

[22]  E. Weiss,et al.  Gating of hole transfer from photoexcited PbS quantum dots to aminoferrocene by the ligand shell of the dots. , 2013, Chemical communications.

[23]  Duane E. Prasuhn,et al.  Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. , 2010, ACS nano.

[24]  Anupam Singhal,et al.  Assessing Near-Infrared Quantum Dots for Deep Tissue, Organ, and Animal Imaging Applications , 2008 .

[25]  Wolfgang Knoll,et al.  Composition-tunable Zn(x)Cd(1-x)Se nanocrystals with high luminescence and stability. , 2003, Journal of the American Chemical Society.

[26]  Q. Peng,et al.  Thiol-Capped CdTe Quantum Dots with Two-Photon Excitation for Imaging High Autofluorescence Background Living Cells , 2009, Journal of Fluorescence.

[27]  P. Selvin,et al.  Two-photon 3D FIONA of individual quantum dots in an aqueous environment. , 2011, Nano letters.

[28]  James McBride,et al.  Structural basis for near unity quantum yield core/shell nanostructures. , 2006, Nano letters.

[29]  M. Singh,et al.  Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. , 2006, Journal of the American Chemical Society.

[30]  R. Tsien,et al.  The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles , 2009, Science.

[31]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[32]  T. Jovin,et al.  Modulation of a photoswitchable dual-color quantum dot containing a photochromic FRET acceptor and an internal standard. , 2012, Nano letters.

[33]  Igor L. Medintz,et al.  Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates , 2006, Nature materials.

[34]  M. Dahan,et al.  Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[35]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[36]  Igor L. Medintz,et al.  Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. , 2012, Analytical chemistry.

[37]  H. Yeh,et al.  Single-quantum-dot-based DNA nanosensor , 2005, Nature materials.

[38]  Maxime Dahan,et al.  Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. , 2010, Nano letters.

[39]  Yong-Hoon Cho,et al.  Enhanced detection sensitivity of pegylated CdSe/ZnS quantum dots-based prostate cancer biomarkers by surface plasmon-coupled emission. , 2012, Biosensors & bioelectronics.

[40]  Jin‐Ming Lin,et al.  Chemiluminescence arising from the decomposition of peroxymonocarbonate and enhanced by CdTe quantum dots. , 2010, The journal of physical chemistry. A.

[41]  Arthur J. Nozik,et al.  Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films , 2001 .

[42]  Shuming Nie,et al.  Multiplexed detection and characterization of rare tumor cells in Hodgkin's lymphoma with multicolor quantum dots. , 2010, Analytical chemistry.

[43]  Igor L. Medintz,et al.  On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. , 2007, Nano letters.

[44]  Jun Yu Li,et al.  Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. , 2005, Journal of Physical Chemistry B.

[45]  Jing Wang,et al.  Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. , 2011, Analytical chemistry.

[46]  R. Sinclair,et al.  Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. , 2008, Analytical Chemistry.

[47]  R. Jain,et al.  Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. , 2009, Journal of the American Chemical Society.

[48]  Zygmunt Gryczynski,et al.  Radiative decay engineering: the role of photonic mode density in biotechnology. , 2003, Journal of physics D: Applied physics.

[49]  Maxime Dahan,et al.  Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging , 2007, Proceedings of the National Academy of Sciences.

[50]  Lance G. Laing,et al.  Label-Free Assays on the BIND System , 2004, Journal of biomolecular screening.

[51]  Heyou Han,et al.  Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. , 2007, Analytica chimica acta.

[52]  Itamar Willner,et al.  Photoelectrochemical Biosensors Without External Irradiation: Probing Enzyme Activities and DNA Sensing Using Hemin/G-Quadruplex-Stimulated Chemiluminescence Resonance Energy Transfer (CRET) Generation of Photocurrents , 2012 .

[53]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[54]  A. Mohs,et al.  Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. , 2009, Nature nanotechnology.

[55]  Sun Park,et al.  Quantum Dot‐Based Screening System for Discovery of G Protein‐Coupled Receptor Agonists , 2012, Chembiochem : a European journal of chemical biology.

[56]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[57]  D. Pang,et al.  Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. , 2011, Biomaterials.

[58]  Vikram C. Sundar,et al.  Quantum-dot optical temperature probes , 2003 .

[59]  Shimon Weiss,et al.  Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy , 2000, Nature Structural Biology.

[60]  P. Grutter,et al.  Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules. , 2007, Biophysical journal.

[61]  P. Wiseman,et al.  A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels. , 2008, Journal of Chemical Physics.

[62]  Frank Y. S. Chuang,et al.  Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. , 2009, Optics letters.

[63]  H. Ju,et al.  Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. , 2009, Talanta.

[64]  Robin H. A. Ras,et al.  Fluorescent silver nanoclusters. , 2011, Nanoscale.

[65]  E. Weiss,et al.  Ligand-controlled rates of photoinduced electron transfer in hybrid CdSe nanocrystal/poly(viologen) films. , 2011, ACS nano.

[66]  Xiaozhou Li,et al.  Study of influence of metal ions on CdTe/H2O2 chemiluminescence , 2008 .

[67]  F. Raymo,et al.  A mechanism to signal receptor-substrate interactions with luminescent quantum dots. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Igor L. Medintz,et al.  Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. , 2012, Journal of the American Chemical Society.

[69]  H. Ewers,et al.  Single Particle Tracking of α7 Nicotinic AChR in Hippocampal Neurons Reveals Regulated Confinement at Glutamatergic and GABAergic Perisynaptic Sites , 2010, PloS one.

[70]  John Silcox,et al.  Non-blinking semiconductor nanocrystals , 2009, Nature.

[71]  Itamar Willner,et al.  Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. , 2011, Journal of the American Chemical Society.

[72]  U. Krull,et al.  Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). , 2007, Analytica chimica acta.

[73]  S. N. Baker,et al.  Luminescent Carbon Nanodots: Emergent Nanolights , 2011 .

[74]  Yan Peng,et al.  Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. , 2012, Talanta.

[75]  Daniel Jaque,et al.  CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. , 2011, Small.

[76]  G. Vancso,et al.  Synthesis of functionalized amphiphilic polymers for coating quantum dots , 2011, Nature Protocols.

[77]  T. Nann,et al.  Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals , 2008 .

[78]  W. Chan,et al.  Nanotoxicology. No signs of illness. , 2012, Nature nanotechnology.

[79]  Ehud Y Isacoff,et al.  Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells , 2008, Proceedings of the National Academy of Sciences.

[80]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[81]  Ping Yang,et al.  Synthesis of highly luminescent CdTe/ZnO core/shell quantum dots in aqueous solution , 2012, Journal of Materials Science.

[82]  Yueping Fang,et al.  Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO , 2008 .

[83]  D. Cramb,et al.  A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. , 2006, Biophysical journal.

[84]  A. R. Clapp,et al.  Dithiocarbamates as capping ligands for water-soluble quantum dots. , 2010, ACS applied materials & interfaces.

[85]  Dai-Wen Pang,et al.  Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. , 2009, Biomaterials.

[86]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[87]  Duane E. Prasuhn,et al.  Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. , 2010, ACS nano.

[88]  Mircea Cotlet,et al.  Highly Stable, Water-Soluble, Intrinsic Fluorescent Hybrid Scaffolds for Imaging and Biosensing , 2011 .

[89]  Duane E. Prasuhn,et al.  The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. , 2011, Bioconjugate chemistry.

[90]  O. Rolinski,et al.  The effect of intensity of excitation on CdSe/ZnS quantum dots: Opportunities in luminescence sensing , 2011 .

[91]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[92]  Y. Zong,et al.  CdSe nanocrystals as hydroperoxide scavengers: a new approach to highly sensitive quantification of lipid hydroperoxides. , 2007, Small.

[93]  P. Jain,et al.  (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 2009 .

[94]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[95]  Itamar Willner,et al.  Probing biocatalytic transformations with CdSe-ZnS QDs. , 2006, Journal of the American Chemical Society.

[96]  Hao Yan,et al.  Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared. , 2010, Journal of the American Chemical Society.

[97]  M. Dahan,et al.  Probing cellular events, one quantum dot at a time , 2010, Nature Methods.

[98]  Wolfgang Knoll,et al.  Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry. , 2004, Analytical chemistry.

[99]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[100]  D. Reinhoudt,et al.  Ferrocene-coated CdSe/ZnS quantum dots as electroactive nanoparticles hybrids , 2010, Nanotechnology.

[101]  Alan R. Lowe,et al.  Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking , 2010, Nature.

[102]  L. Balan,et al.  Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. , 2011, Acta biomaterialia.

[103]  D. Cramb,et al.  Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities. , 2007, Physical chemistry chemical physics : PCCP.

[104]  F. Zhao,et al.  Chemistry of carbon nanotubes in biomedical applications , 2010 .

[105]  Ying Zhang,et al.  High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals , 2005 .

[106]  Yang Li,et al.  Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. , 2009, The Analyst.

[107]  M. E. Phipps,et al.  Time-resolved three-dimensional molecular tracking in live cells. , 2010, Nano letters.

[108]  L. Manna,et al.  Fluorescence enhancement in colloidal semiconductor nanocrystals by metallic nanopatterns , 2007 .

[109]  David E Benson,et al.  Protein design provides lead(II) ion biosensors for imaging molecular fluxes around red blood cells. , 2009, Biochemistry.

[110]  D. Pang,et al.  Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays , 2011, International journal of nanomedicine.

[111]  Shuming Nie,et al.  Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry , 2007, Nature Protocols.

[112]  Xiaogang Peng,et al.  Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. , 2009, Journal of the American Chemical Society.

[113]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[114]  Faramarz Farahi,et al.  Optical Fiber Sensing Using Quantum Dots , 2007, Sensors.

[115]  Z. Lenkei,et al.  Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. , 2010, Journal of the American Chemical Society.

[116]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[117]  Jun‐Jie Zhu,et al.  Electrochemiluminescence based on quantum dots and their analytical application. , 2011, Analytical methods : advancing methods and applications.

[118]  Maung Kyaw Khaing Oo,et al.  Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. , 2010, ACS nano.

[119]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[120]  Igor L. Medintz,et al.  Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. , 2007, Journal of the American Chemical Society.

[121]  Hedi Mattoussi,et al.  Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. , 2012, Advanced drug delivery reviews.

[122]  R. Tsien,et al.  Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles , 2007, Proceedings of the National Academy of Sciences.

[123]  H. Ju,et al.  Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots. , 2008, The Analyst.

[124]  Alexander M Seifalian,et al.  Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review , 2011, Journal of drug targeting.

[125]  H. Ju,et al.  Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence , 2011 .

[126]  G. Zeng,et al.  NSOM/QD-Based Direct Visualization of CD3-Induced and CD28-Enhanced Nanospatial Coclustering of TCR and Coreceptor in Nanodomains in T Cell Activation , 2009, PloS one.

[127]  Igor L. Medintz,et al.  Optimizing Two-Color Semiconductor Nanocrystal Immunoassays in Single Well Microtiter Plate Formats , 2011, Sensors.

[128]  R. Dickson,et al.  Correlated Single Quantum Dot Blinking and Interfacial Electron Transfer Dynamics. , 2010, Chemical science.

[129]  Liwei Lin,et al.  Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. , 2011, ACS nano.

[130]  Shuming Nie,et al.  Semiconductor nanocrystals: structure, properties, and band gap engineering. , 2010, Accounts of chemical research.

[131]  M. Bawendi,et al.  Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. , 2005, Journal of the American Chemical Society.

[132]  Chang Lu,et al.  Quantum dot (QD)-modified carbon tape electrodes for reproducible electrochemiluminescence (ECL) emission on a paper-based platform. , 2012, Analytical chemistry.

[133]  Igor L. Medintz,et al.  Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes. , 2009, Analytical chemistry.

[134]  M. Edidin,et al.  Quantum dot fluorescence characterizes the nanoscale organization of T cell receptors for antigen. , 2011, Biophysical journal.

[135]  Chaoqing Dong,et al.  Measurements for molar extinction coefficients of aqueous quantum dots. , 2010, The Analyst.

[136]  John F. Callan,et al.  Anion Sensing with Luminescent Quantum Dots – A Modular Approach Based on the Photoinduced Electron Transfer (PET) Mechanism , 2008, Journal of Fluorescence.

[137]  Wolfgang J Parak,et al.  Labelling of cells with quantum dots , 2005, Nanotechnology.

[138]  Yang Li,et al.  A chelating dendritic ligand capped quantum dot: preparation, surface passivation, bioconjugation and specific DNA detection. , 2011, Nanoscale.

[139]  L. Feldman,et al.  Homogeneously alloyed CdSxSe1-x nanocrystals: synthesis, characterization, and composition/size-dependent band gap. , 2006, Journal of the American Chemical Society.

[140]  D. E. Benson,et al.  Electron donor solvent effects provide biosensing with quantum dots. , 2006, Journal of the American Chemical Society.

[141]  Tolga Atay,et al.  Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. , 2005, Nano letters.

[142]  Isabelle Texier,et al.  Copper-free click chemistry for highly luminescent quantum dot conjugates: application to in vivo metabolic imaging. , 2010, Bioconjugate chemistry.

[143]  Richard C Zangar,et al.  Photonic crystal enhanced fluorescence for early breast cancer biomarker detection , 2012, Journal of biophotonics.

[144]  E. Hall,et al.  A quantum dot-lucigenin probe for Cl-. , 2008, The Analyst.

[145]  Garry P Nolan,et al.  Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling , 2006, Nature Methods.

[146]  F. Chien,et al.  Localization imaging using blinking quantum dots. , 2011, The Analyst.

[147]  E. Weiss,et al.  Evidence for a Through-Space Pathway for Electron Transfer from Quantum Dots to Carboxylate-Functionalized Viologens , 2012 .

[148]  Maxime Dahan,et al.  Multiple association states between glycine receptors and gephyrin identified by SPT analysis. , 2007, Biophysical journal.

[149]  Xiaogang Peng,et al.  Alternative Routes toward High Quality CdSe Nanocrystals , 2001 .

[150]  Wei Ding,et al.  Enhancement of Immunoassay's Fluorescence and Detection Sensitivity Using Three-dimensional Plasmonic Nano-antenna-dots Array , 2022 .

[151]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[152]  N. Chaniotakis,et al.  Bioconjugated quantum dots as fluorescent probes for bioanalytical applications , 2010, Analytical and bioanalytical chemistry.

[153]  Yong Chen,et al.  NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2 T-cell expansion. , 2008, Blood.

[154]  G. Strouse,et al.  Activated and intermittent photoluminescence in thin CdSe quantum dot films , 2004 .

[155]  Shuming Nie,et al.  Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. , 2010, ACS nano.

[156]  G. Nienhaus,et al.  Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications , 2011 .

[157]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[158]  Duane E. Prasuhn,et al.  Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. , 2011, ACS nano.

[159]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[160]  M. Bruchez Quantum dots find their stride in single molecule tracking. , 2011, Current opinion in chemical biology.

[161]  Moungi G Bawendi,et al.  Compact biocompatible quantum dots functionalized for cellular imaging. , 2008, Journal of the American Chemical Society.

[162]  P. Tinnefeld,et al.  A high sensitive and specific QDs FRET bioprobe for MNase. , 2008, Chemical communications.

[163]  I. Tomlinson,et al.  A flow cytometry-based dopamine transporter binding assay using antagonist-conjugated quantum dots. , 2012, Chemical communications.

[164]  Jin‐Ming Lin,et al.  Determination of L-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide-sodium hydrogen carbonate-CdSe/CdS quantum dots system. , 2010, Talanta.

[165]  Itamar Willner,et al.  Following Glucose Oxidase Activity by Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) Processes Involving Enzyme-DNAzyme Conjugates , 2011, Sensors.

[166]  P. Snee,et al.  Water-soluble semiconductor nanocrystals cap exchanged with metalated ligands. , 2011, ACS nano.

[167]  Tonino Greco,et al.  InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency , 2012, Photonics Europe.

[168]  Joachim O Rädler,et al.  Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy. , 2005, Small.

[169]  E. Weiss,et al.  Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex. , 2011, Journal of the American Chemical Society.

[170]  J. Wachtveitl,et al.  Ultrafast electron transfer from photoexcited CdSe quantum dots to methylviologen. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[171]  H. Ju,et al.  Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. , 2008, Analytical chemistry.

[172]  Alberto Diaspro,et al.  Two-photon fluorescence excitation and related techniques in biological microscopy , 2005, Quarterly Reviews of Biophysics.

[173]  Igor L. Medintz,et al.  Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. , 2013, Chemical reviews.

[174]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[175]  H. Mattoussi,et al.  Investigating Biological Processes at the Single Molecule Level Using Luminescent Quantum Dots , 2009, Annals of Biomedical Engineering.

[176]  Igor L. Medintz,et al.  Single-molecule colocalization studies shed light on the idea of fully emitting versus dark single quantum dots. , 2011, Small.

[177]  Xiaogang Peng,et al.  Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. , 2008, Angewandte Chemie.

[178]  David E Benson,et al.  Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. , 2008, Bioconjugate chemistry.

[179]  M. El-Sayed,et al.  Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy , 1999 .

[180]  H. Mattoussi,et al.  Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots , 2009, Nature Protocols.

[181]  Yang-Hsiang Chan,et al.  Using Patterned Arrays of Metal Nanoparticles to Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots. , 2009, ACS nano.

[182]  P. Mulvaney,et al.  The preparation of colloidally stable, water-soluble, biocompatible, semiconductor nanocrystals with a small hydrodynamic diameter. , 2009, ACS nano.

[183]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[184]  Itamar Willner,et al.  Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots. , 2010, Nano letters.

[185]  F. Raymo,et al.  Biocompatible CdSe-ZnS core-shell quantum dots coated with hydrophilic polythiols. , 2009, Langmuir.

[186]  D. Price,et al.  Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry , 2006, Nature Medicine.

[187]  F. Pinaud,et al.  Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. , 2005, Analytical chemistry.

[188]  D. Shcherbo,et al.  UvA-DARE ( Digital Academic Repository ) Practical and reliable FRET / FLIM pair of fluorescent proteins , 2009 .

[189]  I. Medintz Universal tools for biomolecular attachment to surfaces , 2006, Nature materials.

[190]  Paras N Prasad,et al.  Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. , 2005, Journal of the American Chemical Society.

[191]  Kai Chen,et al.  InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible , 2008, Nano research.

[192]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[193]  Igor L. Medintz,et al.  Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. , 2011, Analytical chemistry.

[194]  C. D. Geddes,et al.  Editorial: Metal-Enhanced Fluorescence , 2002, Journal of Fluorescence.

[195]  A. Bard,et al.  Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles , 2004 .

[196]  Hans Christian Wulf,et al.  Autofluorescence spectrum of skin: component bands and body site variations , 2000, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[197]  Lei Wang,et al.  Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan , 2010 .

[198]  P. Guyot-Sionnest,et al.  Evidence for the role of holes in blinking: negative and oxidized CdSe/CdS dots. , 2012, ACS nano.

[199]  Itamar Willner,et al.  Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). , 2012, Analytical chemistry.

[200]  D. Massotte,et al.  Two-Photon Excitation Fluorescence Cross-Correlation Assay for Ligand−Receptor Binding: Cell Membrane Nanopatches Containing the Human μ-Opioid Receptor , 2007 .

[201]  M. Bawendi,et al.  Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy , 1999, Nature.

[202]  X Chris Le,et al.  Use of quantum dots in the development of assays for cancer biomarkers , 2010, Analytical and bioanalytical chemistry.

[203]  Xiaobin Zhang,et al.  Detection of Prostate Stem Cell Antigen Expression in Human Prostate Cancer Using Quantum-Dot-Based Technology , 2012, Sensors.

[204]  J. Treadway,et al.  Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. , 2003, Nucleic acids research.

[205]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[206]  David E Benson,et al.  Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. , 2006, The Analyst.

[207]  Nela Durisic,et al.  A common mechanism underlies the dark fraction formation and fluorescence blinking of quantum dots. , 2009, ACS nano.

[208]  Igor L. Medintz,et al.  Quantum dot-based resonance energy transfer and its growing application in biology. , 2009, Physical chemistry chemical physics : PCCP.

[209]  J. Oh Surface modification of colloidal CdX-based quantum dots for biomedical applications , 2010 .

[210]  Viktor Malyarchuk,et al.  Enhanced fluorescence emission from quantum dots on a photonic crystal surface , 2007, Nature Nanotechnology.

[211]  Igor L. Medintz,et al.  Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. , 2011, Journal of the American Chemical Society.

[212]  R. Murray Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death , 2011 .

[213]  D. E. Benson,et al.  Wide dynamic range sensing with single quantum dot biosensors. , 2012, ACS nano.

[214]  D. Maysinger,et al.  Quantum dot cytotoxicity and ways to reduce it. , 2013, Accounts of chemical research.

[215]  Frank Morgner,et al.  Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties , 2011, Sensors.

[216]  Jerry C. Chang,et al.  Biocompatible quantum dots for biological applications. , 2011, Chemistry & biology.

[217]  Xiaogang Peng,et al.  Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent , 2002 .

[218]  Hans-Gerd Löhmannsröben,et al.  Quantum dot biosensors for ultrasensitive multiplexed diagnostics. , 2010, Angewandte Chemie.

[219]  Shaojun Dong,et al.  Sensitive and Selective Determination of Cu2+ by Electrochemiluminescence of CdTe Quantum Dots , 2008 .

[220]  David E Benson,et al.  A modular nanoparticle-based system for reagentless small molecule biosensing. , 2005, Journal of the American Chemical Society.

[221]  I. Willner,et al.  Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. , 2011, ACS nano.

[222]  M. Osborne,et al.  Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[223]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[224]  A. Bard,et al.  Effect of Surface Passivation on the Electrogenerated Chemiluminescence of CdSe/ZnSe Nanocrystals , 2003 .

[225]  Vladimir P Torchilin,et al.  Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo , 2005, Nature Medicine.

[226]  Kevin W. Eliceiri,et al.  Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment , 2008, Clinical & Experimental Metastasis.

[227]  Tadashi Nagashima,et al.  Three-dimensional Imaging of the Intracellular Localization of Growth Hormone and Prolactin and Their mRNA Using Nanocrystal (Quantum Dot) and Confocal Laser Scanning Microscopy Techniques , 2005, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[228]  Igor L. Medintz,et al.  Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. , 2008, Journal of the American Chemical Society.

[229]  A. Jen,et al.  Cooperative Near‐Field Surface Plasmon Enhanced Quantum Dot Nanoarrays , 2010 .

[230]  M. Pomper,et al.  CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. , 2011, Small.

[231]  P. Pantazis,et al.  Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. , 2010, Journal of the American Chemical Society.

[232]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[233]  B. Cohen,et al.  Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates. , 2012, ACS nano.

[234]  R. Weissleder,et al.  Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. , 2010, Journal of the American Chemical Society.

[235]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[236]  Watt W Webb,et al.  Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[237]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[238]  T. Tachikawa,et al.  Photoinduced Electron Transfer in a Quantum Dot−Cucurbituril Supramolecular Complex , 2011 .

[239]  M. Shim,et al.  Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals , 2001 .

[240]  Jianghong Rao,et al.  Biosensing and imaging based on bioluminescence resonance energy transfer. , 2009, Current opinion in biotechnology.

[241]  C. Frigerio,et al.  Application of quantum dots as analytical tools in automated chemical analysis: a review. , 2012, Analytica chimica acta.

[242]  Sergey K. Poznyak,et al.  Quantum Dot Chemiluminescence , 2004 .

[243]  R. Jain,et al.  A Nanocrystal-based Ratiometric pH Sensor for Natural pH Ranges. , 2012, Chemical Science.

[244]  Lindsay E. Pell,et al.  Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots , 2002, Science.

[245]  Jing-Juan Xu,et al.  Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer. , 2012, Analytical chemistry.

[246]  Chih-Ching Huang,et al.  Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging , 2012 .

[247]  J. G. Solé,et al.  Deep tissue bio-imaging using two-photon excited CdTe fluorescent quantum dots working within the biological window. , 2012, Nanoscale.

[248]  Duane E. Prasuhn,et al.  Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots. , 2010, ACS nano.

[249]  Catherine J. Murphy,et al.  Quantum Dots: A Primer , 2002 .

[250]  Igor L. Medintz,et al.  Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. , 2009, Journal of the American Chemical Society.

[251]  Maryam Tabrizian,et al.  Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors. , 2011, Analytical chemistry.

[252]  D. Cramb,et al.  Nanoparticles as fluorescence labels: is size all that matters? , 2008, Biophysical journal.

[253]  Data detection algorithms for multiplexed quantum dot encoding. , 2012, Optics express.

[254]  Jaehyun Park,et al.  Reverse type-I ZnSe/InP/ZnS core/shell/shell nanocrystals: cadmium-free quantum dots for visible luminescence. , 2011, Small.

[255]  Warren C W Chan,et al.  Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. , 2011, ACS nano.

[256]  Ashok Kumar,et al.  FRET-Based Quantum Dot Immunoassay for Rapid and Sensitive Detection of Aspergillus amstelodami , 2011, Sensors.

[257]  Chun-Yang Zhang,et al.  Single quantum dot-based nanosensor for multiple DNA detection. , 2010, Analytical chemistry.

[258]  Igor L. Medintz,et al.  A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.

[259]  Wei Chen,et al.  Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. , 2012, Chemical Society reviews.

[260]  Wolfgang Knoll,et al.  Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width. , 2003, Journal of the American Chemical Society.

[261]  Angel Orte,et al.  A chloride ion nanosensor for time-resolved fluorimetry and fluorescence lifetime imaging. , 2012, The Analyst.

[262]  Jiye Cai,et al.  Quantum dot labeling based on near-field optical imaging of CD44 molecules. , 2010, Micron.

[263]  Rebekah Drezek,et al.  Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. , 2007, Journal of the American Chemical Society.

[264]  Jianjun Shi,et al.  DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. , 2010, Nanoscale.

[265]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[266]  P. Prasad,et al.  Multiphoton absorbing materials: molecular designs, characterizations, and applications. , 2008, Chemical Reviews.

[267]  Xiaogang Peng,et al.  Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stability by Growth , 2008 .

[268]  Igor L. Medintz,et al.  Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. , 2011, Journal of the American Chemical Society.

[269]  P. Lai,et al.  Sized controlled synthesis, purification, and cell studies with silicon quantum dots. , 2011, Nanoscale.

[270]  Shuming Nie,et al.  Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. , 2003, Journal of the American Chemical Society.

[271]  Ekaterina Grekova,et al.  The development of direct multicolour fluorescence cross-correlation spectroscopy: towards a new tool for tracking complex biomolecular events in real-time. , 2012, Physical chemistry chemical physics : PCCP.

[272]  Jun Yu Li,et al.  CdTe nanocrystals sensitized chemiluminescence and the analytical application. , 2009, Talanta.

[273]  Gang Bao,et al.  Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. , 2012, ACS nano.

[274]  Yi Zhang,et al.  MS-qFRET: a quantum dot-based method for analysis of DNA methylation. , 2009, Genome research.

[275]  Miho Suzuki,et al.  Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. , 2008, Journal of the American Chemical Society.

[276]  Igor L. Medintz,et al.  Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors. , 2011, ACS nano.

[277]  D. Jaque,et al.  High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. , 2012, Small.

[278]  H. Mattoussi,et al.  On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. , 2012, Journal of the American Chemical Society.

[279]  Warren C W Chan,et al.  Quantum-dot-encoded microbeads for multiplexed genetic detection of non-amplified DNA samples. , 2011, Small.

[280]  Igor L. Medintz,et al.  Solution-phase single quantum dot fluorescence resonance energy transfer. , 2006, Journal of the American Chemical Society.

[281]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[282]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[283]  H. Ju,et al.  Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. , 2007, Analytical chemistry.

[284]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[285]  Yanjie Zhang,et al.  Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals , 2011, Sensors.

[286]  Jingling Xue,et al.  Comparison of quantum dots immunofluorescence histochemistry and conventional immunohistochemistry for the detection of caveolin-1 and PCNA in the lung cancer tissue microarray , 2009, Journal of Molecular Histology.

[287]  A. Bard,et al.  Electrogenerated Chemiluminescence of CdSe Nanocrystals , 2002 .

[288]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[289]  H. Ju,et al.  Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. , 2007, Analytical chemistry.

[290]  Igor L. Medintz,et al.  Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability , 2008, Journal of Materials Chemistry.

[291]  Arie Zaban,et al.  Quantum-dot-sensitized solar cells. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[292]  K. Lee,et al.  Effects of dopamine concentration on energy transfer between dendrimer-QD and dye-labeled antibody. , 2009, Ultramicroscopy.