A Stable Quasi-Solid-State Sodium-Sulfur Battery.

Ambient-temperature sodium-sulfur (Na-S) batteries are considered a promising energy storage system due to their high theoretical energy density and low costs. However, great challenges remain in achieving a high rechargeable capacity and long cycle life. Herein we report a stable quasi-solid-state Na-S battery enabled by a poly(S-pentaerythritol tetraacrylate (PETEA))-based cathode and a (PETEA-tris[2-(acryloyloxy)ethyl] isocyanurate (THEICTA))-based gel polymer electrolyte. The polymeric sulfur electrode strongly anchors sulfur through chemical binding and inhibits the shuttle effect. Meanwhile, the in situ formed polymer electrolyte with high ionic conductivity and enhanced safety successfully stabilizes the Na anode/electrolyte interface, and simultaneously immobilizes soluble Na polysulfides. The as-developed quasi-solid-state Na-S cells exhibit a high reversible capacity of 877 mA h g-1 at 0.1 C and an extended cycling stability.

[1]  Haizhu Sun,et al.  High‐Performance and Low‐Temperature Lithium–Sulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation , 2018 .

[2]  Xing-long Wu,et al.  Quasi-Solid-State Sodium-Ion Full Battery with High-Power/Energy Densities. , 2018, ACS applied materials & interfaces.

[3]  H. Fan,et al.  Flexible Quasi‐Solid‐State Sodium‐Ion Capacitors Developed Using 2D Metal–Organic‐Framework Array as Reactor , 2018 .

[4]  Feixiang Wu,et al.  A Sulfur–Limonene‐Based Electrode for Lithium–Sulfur Batteries: High‐Performance by Self‐Protection , 2018, Advanced materials.

[5]  Bin Li,et al.  3D Printing Sulfur Copolymer‐Graphene Architectures for Li‐S Batteries , 2018 .

[6]  Hong‐Jie Peng,et al.  Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. , 2018, Angewandte Chemie.

[7]  S. Mitra,et al.  Sulfur Copolymer: A New Cathode Structure for Room-Temperature Sodium–Sulfur Batteries , 2017 .

[8]  Yan‐Bing He,et al.  A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances , 2017 .

[9]  Rezan Demir‐Cakan,et al.  Investigation of the Effect of Using Al2O3–Nafion Barrier on Room-Temperature Na–S Batteries , 2017 .

[10]  Huakun Liu,et al.  Room‐Temperature Sodium‐Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry , 2017 .

[11]  Xingguo Qi,et al.  In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries , 2017 .

[12]  Ruopian Fang,et al.  A Sulfur‐Rich Copolymer@CNT Hybrid Cathode with Dual‐Confinement of Polysulfides for High‐Performance Lithium–Sulfur Batteries , 2017, Advanced materials.

[13]  Shuya Wei,et al.  Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes , 2017, Advanced materials.

[14]  Adam P. Cohn,et al.  A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability. , 2017, Nano letters.

[15]  Bryan D. Vogt,et al.  Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons , 2017 .

[16]  D. Zhao,et al.  Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. , 2016, Journal of the American Chemical Society.

[17]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[18]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[19]  Ming Liu,et al.  SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life , 2016 .

[20]  Ming Liu,et al.  Novel gel polymer electrolyte for high- performance lithium-sulfur batteries , 2016 .

[21]  A. Manthiram,et al.  Room-Temperature Sodium–Sulfur Batteries with Liquid-Phase Sodium Polysulfide Catholytes and Binder-Free Multiwall Carbon Nanotube Fabric Electrodes , 2014 .

[22]  H. Althues,et al.  Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. , 2014, Chemical communications.

[23]  Ya‐Xia Yin,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[24]  Byung Gon Kim,et al.  One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. , 2013, Nano letters.

[25]  K. Char,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[26]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[27]  S. Hashmi,et al.  Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries , 2011 .

[28]  Bernhard Schartel,et al.  Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation , 2011 .

[29]  E. Quartarone,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[30]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .

[31]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[32]  P. Petrov,et al.  Innovative approach for stabilizing poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) micelles by forming nano-sized networks in the micelle , 2005 .

[33]  R. Huggins Solid State Ionics , 1989 .

[34]  Wifredo Ricart,et al.  The version of record : , 2018 .