Functional large deviations for multivariate regularly varying random walks

We extend classical results by A. V. Nagaev [Izv Akad. Nauk UzSSR Ser Fiz.-Mat. Nauk 6 (1969) 17-22, Theory Probab. Appl. 14 (1969) 51-64, 193-208] on large deviations for sums of i.i.d. regularly varying random variables to partial sum processes of i.i.d. regularly varying vectors. The results are stated in terms of a heavy-tailed large deviation principle on the space of cAdlAg functions. We illustrate how these results can be applied to functionals of the partial sum process, including ruin probabilities for multivariate random walks and long strange se-ments. These results make precise the idea of heavy-tailed large deviation heuristics: in an asymptotic sense, only the largest step contributes to the extremal behavior of a multivariate random walk.

[1]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[2]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[3]  Richard A. Davis,et al.  Regular variation of GARCH processes , 2002 .

[4]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[5]  Gennady Samorodnitsky,et al.  Long strange segments of a stochastic process and long range dependence , 1999 .

[6]  L. Haan,et al.  On convergence toward an extreme value distribution in C[0,1] , 2001 .

[7]  Sidney I. Resnick Point processes, regular variation and weak convergence , 1986 .

[8]  M. Meerschaert Regular Variation in R k , 1988 .

[9]  P. Embrechts,et al.  Estimates for the probability of ruin with special emphasis on the possibility of large claims , 1982 .

[10]  S. Kotz,et al.  The Theory Of Stochastic Processes I , 1974 .

[11]  R. Cowan An introduction to the theory of point processes , 1978 .

[12]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[13]  Henrik Hult,et al.  Extremal behavior of regularly varying stochastic processes , 2005 .

[14]  I. I. Gikhman,et al.  The Theory of Stochastic Processes II , 1975 .

[15]  Thomas Mikosch,et al.  Large Deviations of Heavy-Tailed Sums with Applications in Insurance , 1998 .

[16]  S. V. Nagaev,et al.  Large Deviations of Sums of Independent Random Variables , 1979 .

[17]  Gennady Samorodnitsky,et al.  Erratum to “Long strange segments in a long-range-dependent moving average” [Stochastic Process. Appl. 93 (2001) 119–148] , 2002 .

[18]  Andrew Odlyzko,et al.  Large deviations of sums of independent random variables , 1988 .

[19]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[20]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[21]  Filip Lindskog,et al.  Multivariate extremes and regular variation for stochastic processes , 2004 .

[22]  O. Kallenberg Random Measures , 1983 .

[23]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[24]  D. Aldous The Central Limit Theorem for Real and Banach Valued Random Variables , 1981 .

[25]  V. V. Petrov,et al.  On Large Deviations of Sums of Independent Random Variables , 2007 .

[26]  I. I. Gikhman,et al.  The Theory of Stochastic Processes III , 1979 .

[27]  A. Nagaev Integral Limit Theorems Taking Large Deviations Into Account When Cramér’s Condition Does Not Hold. II , 1969 .

[28]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[29]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[30]  Gennady Samorodnitsky,et al.  Long strange segments in a long-range-dependent moving average☆ , 2001 .