Dynamic characterization of a long span bridge: A finite element based approach

Abstract Aging bridges coupled with increasing traffic loads are producing a severe toll on the nation's infrastructure. This has made it necessary to take a closer look at the health of existing bridges and develop automated damage identification methods if possible. Recent works in the field of structural dynamics have shown that damage detection techniques utilizing parameters like mode shapes, modal frequencies and damping ratios can be used to identify damage in structural systems. It is, however, important to be able to establish a baseline model for the structure first, and then a model updating technique can be utilized to evaluate the condition of the structure from time to time. It is with this goal in mind that the authors have decided to establish the process for obtaining a baseline model for a long span bridge. Based on the actual design drawings of a bridge, finite element (FE) models of the bridge in question are developed using SDRC-IDEAS. Three models of the bridge are simulated using Normal Mode Dynamics solver in SDRC-IDEAS to obtain the modal parameters of interest, in this case the modal frequencies and the mode shapes. A modal assurance criteria (MAC) is utilized to compare the different simulated mode shapes and, finally, the modal frequencies that have been obtained from the FE analysis are compared to frequencies that have been obtained from some preliminary field tests.