Microsaccadic sampling of moving image information provides Drosophila hyperacute vision

Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements.

[1]  V. Braitenberg,et al.  A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.

[2]  P. Skorupski,et al.  Differences in Photoreceptor Processing Speed for Chromatic and Achromatic Vision in the Bumblebee, Bombus terrestris , 2010, The Journal of Neuroscience.

[3]  K Kirschfeld,et al.  [In vivo optical study of photoreceptor elements in the compound eye of Drosophila]. , 1971, Kybernetik.

[4]  Andreas Klaus,et al.  Optimum spatiotemporal receptive fields for vision in dim light. , 2009, Journal of vision.

[5]  S. B. Laughlin,et al.  Fast and slow photoreceptors — a comparative study of the functional diversity of coding and conductances in the Diptera , 1993, Journal of Comparative Physiology A.

[6]  S. Laughlin Retinal information capacity and the function of the pupil , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[7]  M. Schnitzer,et al.  GABAergic Lateral Interactions Tune the Early Stages of Visual Processing in Drosophila , 2013, Neuron.

[8]  R. O. Uusitalo,et al.  Graded responses and spiking properties of identified first-order visual interneurons of the fly compound eye. , 1995, Journal of neurophysiology.

[9]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[10]  Eric J. Warrant,et al.  The Trade-Off Between Resolution and Sensitivity in Compound Eyes , 2018 .

[11]  E. Buchner,et al.  Selective Histamine Uptake Rescues Photo- and Mechanoreceptor Function of Histidine Decarboxylase-Deficient DrosophilaMutant , 1998, The Journal of Neuroscience.

[12]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[13]  K. Kirschfeld,et al.  Spectral tuning of rhodopsin and metarhodopsin in vivo , 1993, Neuron.

[14]  I. Meinertzhagen,et al.  Direct connections between the R7/8 and R1–6 photoreceptor subsystems in the dipteran visual system , 1989, Cell and Tissue Research.

[15]  Roger C. Hardie,et al.  Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R 7 and 8 , 1979, Journal of comparative physiology.

[16]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[17]  M Heisenberg,et al.  Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. , 1971, The Journal of experimental biology.

[18]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[19]  V. Hateren,et al.  Processing of natural time series of intensities in the early visual system of the blowfly , 1997 .

[20]  S. Benzer,et al.  Behavioral genetics of thermosensation and hygrosensation in Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Laughlin,et al.  The rate of information transfer at graded-potential synapses , 1996, Nature.

[22]  Martina Poletti,et al.  Microscopic Eye Movements Compensate for Nonhomogeneous Vision within the Fovea , 2013, Current Biology.

[23]  M. Juusola Linear and non-linear contrast coding in light-adapted blowfly photoreceptors , 1993, Journal of Comparative Physiology A.

[24]  Ximena J. Nelson,et al.  Hyperacute motion detection by the lateral eyes of jumping spiders , 2012, Vision Research.

[25]  B W Knight,et al.  Adapting bump model for ventral photoreceptors of Limulus , 1982, The Journal of general physiology.

[26]  K. Götz Visual guidance in Drosophila. , 1980, Basic life sciences.

[27]  Gary D. Bernard,et al.  The effect of motion on visual acuity of the compound eye: A theoretical analysis , 1975, Vision Research.

[28]  A S French,et al.  Nonlinear models of the first synapse in the light-adapted fly retina. , 1995, Journal of neurophysiology.

[29]  F. Zettler,et al.  Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[30]  S. B. Laughlin,et al.  Sexual dimorphism matches photoreceptor performance to behavioural requirements , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  Reinhard Wolf,et al.  Visual Pattern Recognition in Drosophila Is Invariant for Retinal Position , 2004, Science.

[33]  D. G. Stavenga,et al.  On optical crosstalk between fly rhabdomeres , 1975, Biological Cybernetics.

[34]  J. H. van Hateren,et al.  Three modes of spatiotemporal preprocessing by eyes , 1993, Journal of Comparative Physiology A.

[35]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[36]  A. Borst,et al.  Central gating of fly optomotor response , 2010, Proceedings of the National Academy of Sciences.

[37]  S. Shaw Early visual processing in insects. , 1984, The Journal of experimental biology.

[38]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[39]  D. Stavenga,et al.  Insect pupil mechanisms , 1990, Journal of Comparative Physiology A.

[40]  R. Hardie,et al.  Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine , 2016, Front. Neural Circuits.

[41]  E. Brenner,et al.  Motion extrapolation is not responsible for the flash–lag effect , 2000, Vision Research.

[42]  R. Hardie,et al.  The Drosophila SK Channel (dSK) Contributes to Photoreceptor Performance by Mediating Sensitivity Control at the First Visual Network , 2011, The Journal of Neuroscience.

[43]  T. Horikoshi,et al.  Comparison of stimulus-response (V-log I) functions in five types of lepidopteran compound eyes (46 species) , 2004, Journal of Comparative Physiology A.

[44]  A S French,et al.  The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities. , 1993, Biophysical journal.

[45]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[46]  B. Minke The History of the Prolonged Depolarizing Afterpotential (PDA) and Its Role in Genetic Dissection of Drosophila Phototransduction , 2012, Journal of neurogenetics.

[47]  Eric J. Warrant,et al.  A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis , 2005, Cell and Tissue Research.

[48]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[49]  Martin Wilson,et al.  Angular sensitivity of light and dark adapted locust retinula cells , 1975, Journal of comparative physiology.

[50]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[51]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[52]  U. Tepass,et al.  Adherens junctions in Drosophila retinal morphogenesis. , 2007, Trends in cell biology.

[53]  D. Stavenga Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics , 2002, Journal of Comparative Physiology A.

[54]  Tingting Wang,et al.  Ih Channels Control Feedback Regulation from Amacrine Cells to Photoreceptors , 2015, PLoS biology.

[55]  Qasim Zaidi,et al.  Neuronal nonlinearity explains greater visual spatial resolution for darks than lights , 2014, Proceedings of the National Academy of Sciences.

[56]  W. Pak,et al.  Genetic and molecular identification of a Drosophila histidine decarboxylase gene required in photoreceptor transmitter synthesis. , 1993, The EMBO journal.

[57]  C. Schilstra,et al.  Stabilizing gaze in flying blowflies , 1998, Nature.

[58]  N. Franceschini,et al.  Distribution and properties of sex-specific photoreceptors in the flyMusca domestica , 1981, Journal of comparative physiology.

[59]  M. V. Srinivasan Shouldn't directional movement detection necessarily be “colour-blind”? , 1985, Vision Research.

[60]  Ranu Jung,et al.  Encyclopedia of Computational Neuroscience , 2015, Springer New York.

[61]  Dietrich Burkhardt,et al.  Visual field of single retinula cells and interommatidial inclination in the compound eye of the blowfly Calliphora erythrocephala , 1964, Zeitschrift für vergleichende Physiologie.

[62]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[63]  Dietrich Burkhardt,et al.  On the vision of insects , 2004, Journal of comparative physiology.

[64]  N. Franceschini,et al.  Etude optique in vivo des éléments photorécepteurs dans l'œil composé de Drosophila , 2004, Kybernetik.

[65]  M. Lappe,et al.  Neuronal latencies and the position of moving objects , 2001, Trends in Neurosciences.

[66]  B. Pick,et al.  Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies , 1977, Biological Cybernetics.

[67]  B. Swinderen,et al.  Attention-like processes in Drosophila require short-term memory genes. , 2007 .

[68]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[69]  J. Victor,et al.  The unsteady eye: an information-processing stage, not a bug , 2015, Trends in Neurosciences.

[70]  J. Yellott Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing , 1982, Vision Research.

[71]  W. Ribi,et al.  Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly , 1978, Cell and Tissue Research.

[72]  D. Stavenga,et al.  Calcium homeostasis in photoreceptor cells of Drosophila mutants inaC and trp studied with the pupil mechanism , 1996, Visual Neuroscience.

[73]  M. Korenberg,et al.  Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems , 1988, Annals of Biomedical Engineering.

[74]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[75]  Mikko Juusola,et al.  Electrophysiological Method for Recording Intracellular Voltage Responses of Drosophila Photoreceptors and Interneurons to Light Stimuli In Vivo , 2016, Journal of visualized experiments : JoVE.

[76]  Zhuoyi Song,et al.  How a fly photoreceptor samples light information in time , 2017, The Journal of physiology.

[77]  S. Laughlin The role of sensory adaptation in the retina. , 1989, The Journal of experimental biology.

[78]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[79]  J. A. Stacey,et al.  Selective attention in the honeybee optic lobes precedes behavioral choices , 2014, Proceedings of the National Academy of Sciences.

[80]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[81]  K. Kirschfeld,et al.  Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca , 1969, Kybernetik.

[82]  C. H. G. Wright,et al.  A Multiaperture Bioinspired Sensor With Hyperacuity , 2012, IEEE Sensors Journal.

[83]  Zhuoyi Song,et al.  Refractory Sampling Links Efficiency and Costs of Sensory Encoding to Stimulus Statistics , 2014, The Journal of Neuroscience.

[84]  D. O’Carroll,et al.  Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light , 2016, Current Biology.

[85]  Michael J. Korenberg,et al.  Applications of fast orthogonal search: Time-series analysis and resolution of signals in noise , 2006, Annals of Biomedical Engineering.

[86]  Eric J. Warrant,et al.  Arthropod eye design and the physical limits to spatial resolving power , 1993, Progress in Neurobiology.

[87]  J. H. van Hateren,et al.  Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions , 1984, Journal of Comparative Physiology A.

[88]  R. O. Uusitalo,et al.  Transfer of graded potentials at the photoreceptor-interneuron synapse , 1995, The Journal of general physiology.

[89]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[90]  M. Juusola,et al.  Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices , 2010, PloS one.

[91]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[92]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[93]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[94]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[95]  Doekele G Stavenga,et al.  Visual acuity of fly photoreceptors in natural conditions - dependence on UV sensitizing pigment and light-controlling pupil , 2004, Journal of Experimental Biology.

[96]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[97]  Dan-Eric Nilsson,et al.  Optics and Evolution of the Compound Eye , 1989 .

[98]  J. H. Van Hateren,et al.  Spatiotemporal contrast sensitivity of early vision , 1993, Vision Research.

[99]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[100]  M. Nalls,et al.  Prospective Associations of Coronary Heart Disease Loci in African Americans Using the MetaboChip: The PAGE Study , 2014, PloS one.

[101]  K. Donner,et al.  Modelling the effect of microsaccades on retinal responses to stationary contrast patterns , 2007, Vision Research.

[102]  Mark A. Frye,et al.  Figure–ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior , 2014, Journal of Experimental Biology.

[103]  G. D. McCann,et al.  Development and application of white-noise modeling techniques for studies of insect visual nervous system , 1973, Kybernetik.

[104]  Matti Järvilehto,et al.  Lateral inhibition in an insect eye , 1972, Zeitschrift für vergleichende Physiologie.

[105]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[106]  A. S. French,et al.  Shaker K+ channels contribute early nonlinear amplification to the light response in Drosophila photoreceptors. , 2003, Journal of neurophysiology.

[107]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[108]  Roger C. Hardie,et al.  Fly photoreceptors. III. Angular sensitivity as a function of wavelength and the limits of resolution , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[109]  Mikko Vähäsöyrinki,et al.  Interactions between light-induced currents, voltage-gated currents, and input signal properties in Drosophila photoreceptors. , 2004, Journal of neurophysiology.

[110]  A S French,et al.  Visual acuity for moving objects in first- and second-order neurons of the fly compound eye. , 1997, Journal of neurophysiology.

[111]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[112]  S. R. Shaw,et al.  Retinal resistance barriers and electrical lateral inhibition , 1975, Nature.

[113]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[114]  S B Laughlin,et al.  Variations in photoreceptor response dynamics across the fly retina. , 2001, Journal of neurophysiology.

[115]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[116]  D. G. Stavenga,et al.  Angular sensitivity of blowfly photoreceptors: broadening by artificial electrical coupling , 1987, Journal of Comparative Physiology A.

[117]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[118]  G. D. Bernard,et al.  Insect pupil mechanisms , 1979, Journal of Comparative Physiology A.

[119]  J. V. van Hateren,et al.  Adaptation is Faster after Luminance Decrements than after Luminance Increments, Independently of Test Pulse Polarity , 1997 .

[120]  Charles P. Ratliff,et al.  Retina is structured to process an excess of darkness in natural scenes , 2010, Proceedings of the National Academy of Sciences.

[121]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[122]  R. W. DITCHBURN,et al.  Vision with a Stabilized Retinal Image , 1952, Nature.

[123]  S B Laughlin,et al.  Single photon signals in fly photoreceptors and first order interneurones at behavioral threshold. , 1981, The Journal of physiology.

[124]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[125]  Lani F. Wu,et al.  The Evolution and Development of Neural Superposition , 2014, Journal of neurogenetics.

[126]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: II. Rising Temperature Increases the Bandwidth of Reliable Signaling , 2001 .

[127]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[128]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[129]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: I. Response Dynamics and Signaling Efficiency at 25°C , 2001 .

[130]  Jonathan D. Victor,et al.  Nonlinear Systems Analysis in Vision: Overview of Kernel Methods , 2018 .

[131]  S. Laughlin,et al.  Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system , 2000, Vision Research.

[132]  Tom Ellis,et al.  Predicting Translation Initiation Rates for Designing Synthetic Biology , 2013, Front. Bioeng. Biotechnol..

[133]  N. Franceschini,et al.  Le contrôle automatique du flux lumineux dans l'oeil composé des Diptères , 1976, Biological Cybernetics.

[134]  R. Nijhawan,et al.  Neural delays, visual motion and the flash-lag effect , 2002, Trends in Cognitive Sciences.

[135]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[136]  K. Mimura Receptive field patterns in photoreceptors of the fly , 1981, Journal of comparative physiology.

[137]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[138]  Anna E Honkanen,et al.  Cockroach optomotor responses below single photon level , 2014, Journal of Experimental Biology.

[139]  David S. Williams,et al.  Rhabdom size and photoreceptor membrane turnover in a muscoid fly , 2004, Cell and Tissue Research.

[140]  Stephen A. Billings,et al.  Data Modelling for Analysis of Adaptive Changes in Fly Photoreceptors , 2009, ICONIP.

[141]  Ian A. Meinertzhagen,et al.  Wiring Economy and Volume Exclusion Determine Neuronal Placement in the Drosophila Brain , 2011, Current Biology.

[142]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[143]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[144]  S. Grill,et al.  Photomechanical Responses in Drosophila Photoreceptors , 2012 .

[145]  R. Hengstenberg,et al.  Das augenmuskelsystem der stubenfliege musca domestica , 1971, Kybernetik.

[146]  Ehud Ahissar,et al.  Figuring Space by Time , 2001, Neuron.

[147]  N. Franceschini,et al.  Electrophysiological analysis of fly retina , 1979, Journal of comparative physiology.

[148]  D. Nilsson,et al.  Did neural pooling for night vision lead to the evolution of neural superposition eyes? , 1994, Journal of Comparative Physiology A.

[149]  Bart R. H. Geurten,et al.  Saccadic body turns in walking Drosophila , 2014, Front. Behav. Neurosci..

[150]  W. H. Miller,et al.  Photoreceptor diameter and spacing for highest resolving power. , 1977, Journal of the Optical Society of America.

[151]  Stéphane Viollet,et al.  Vibrating Makes for Better Seeing: From the Fly’s Micro-Eye Movements to Hyperacute Visual Sensors , 2014, Front. Bioeng. Biotechnol..

[152]  S. Laughlin,et al.  Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding , 2007, PLoS biology.

[153]  R. de Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.

[154]  H. Barlow The Size of Ommatidia in Apposition Eyes , 1952 .

[155]  Mikko Vähäsöyrinki,et al.  Robustness of Neural Coding in Drosophila Photoreceptors in the Absence of Slow Delayed Rectifier K+ Channels , 2006, The Journal of Neuroscience.

[156]  Roland Gemperlein,et al.  A study of the response properties of retinula cells of flies using nonlinear identification theory , 1975, Biological Cybernetics.

[157]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[158]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[159]  J. H. van Hateren,et al.  Saccadic head and thorax movements in freely walking blowflies , 2004, Journal of Comparative Physiology A.

[160]  M. Srinivasan,et al.  Spatial processing of visual information in the movement-detecting pathway of the fly , 2004, Journal of comparative physiology.

[161]  Stephen A. Billings,et al.  Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors , 2012, Current Biology.

[162]  David P. Corey,et al.  Mechanoelectrical transduction by hair cells , 1992, Trends in Neurosciences.

[163]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[164]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[165]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[166]  Junhai Han,et al.  Phototransduction in Drosophila , 2012, Science China Life Sciences.

[167]  Musa H. Asyali,et al.  Use of Meixner functions in estimation of Volterra kernels of nonlinear systems with delay , 2005, IEEE Transactions on Biomedical Engineering.

[168]  R. B. Pinter,et al.  Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks , 1992 .

[169]  Eng-Leng Mah,et al.  Photoreceptor processing improves salience facilitating small target detection in cluttered scenes. , 2008, Journal of vision.

[170]  J. H. Hateren,et al.  Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors , 1984, Journal of Comparative Physiology A.

[171]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[172]  Barbara Blakeslee,et al.  The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[173]  Gonzalo G. de Polavieja,et al.  The Rate of Information Transfer of Naturalistic Stimulation by Graded Potentials , 2003, The Journal of general physiology.

[174]  Eric J. Warrant,et al.  Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[175]  S. Laughlin,et al.  Changes in the intensity-response function of an insect's photoreceptors due to light adaptation , 1981, Journal of comparative physiology.

[176]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics , 2009, PloS one.

[177]  Simon B Laughlin,et al.  Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica , 2003, Journal of Experimental Biology.

[178]  D. Stavenga Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila , 2003, Journal of Comparative Physiology A.

[179]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[180]  R. Hardie,et al.  Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.

[181]  Hendrik Eckert,et al.  Nonlinear dynamic transfer characteristics of cells in the peripheral visual pathway of flies , 2004, Biological Cybernetics.

[182]  M. J. Korenberg,et al.  Two Methods for Calculating the Responses of Photoreceptors to Moving Objects , 1998, Annals of Biomedical Engineering.

[183]  J. H. van Hateren,et al.  Real and optimal neural images in early vision , 1992, Nature.

[184]  E. Buchner,et al.  Genetic depletion of histamine from the nervous system of Drosophila eliminates specific visual and mechanosensory behavior , 1996, Journal of Comparative Physiology A.

[185]  A. Dubs The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance , 1982, Journal of comparative physiology.

[186]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms , 2009, PloS one.

[187]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[188]  M Järvilehto,et al.  Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors , 1994, The Journal of general physiology.

[189]  R. Hengstenberg [Eye muscle system of the housefly Musca domestica. I. Analysis of the "clock spikes" and their sources]. , 1971, Kybernetik.

[190]  Irina Sinakevitch,et al.  Chemical neuroanatomy of the fly's movement detection pathway , 2004, The Journal of comparative neurology.

[191]  E. Mazzoni,et al.  Feedback from Rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors , 2011, Nature.

[192]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[193]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[194]  R. Shapley,et al.  “Black” Responses Dominate Macaque Primary Visual Cortex V1 , 2009, The Journal of Neuroscience.

[195]  J. H. van Hateren,et al.  Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly , 1986, Journal of Comparative Physiology A.

[196]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[197]  M. F. LAND,et al.  Head Movement of Flies during Visually Guided Flight , 1973, Nature.

[198]  Heidi L. Rehm,et al.  TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells , 2004, Nature.

[199]  C. M.,et al.  Role of primary excitation statistics in the generation of antibunched and sub-Poisson light , 1984 .

[200]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[201]  R. Hardie,et al.  Single photon responses in Drosophila photoreceptors and their regulation by Ca2+ , 2000, The Journal of physiology.

[202]  Yu Zhou,et al.  Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling , 2016, Front. Comput. Neurosci..

[203]  D. G. Stavenga,et al.  Angular and spectral sensitivity of fly photoreceptors. III. Dependence on the pupil mechanism in the blowfly Calliphora , 2004, Journal of Comparative Physiology A.

[204]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[205]  G. Laufer Introduction to Optics and Lasers in Engineering , 1996 .

[206]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[207]  Erich Buchner,et al.  Visual movement detection under light- and dark-adaptation in the fly,Musca domestica , 1979, Journal of comparative physiology.

[208]  M. Land Compound eye structure: Matching eye to environment , 1999 .

[209]  Mikko Vähäsöyrinki,et al.  The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors , 2003, Nature.