Metabolic factors and genetic risk mediate familial type 2 diabetes risk in the Framingham Heart Study

[1]  T. Dawber,et al.  The Framingham Study , 2014 .

[2]  M. Fornage,et al.  Title: Polygenic type 2 diabetes prediction at the limit of common variant detection Running title: T2D polygenic prediction , 2014 .

[3]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.

[4]  Linda Valeri,et al.  Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. , 2013, Psychological methods.

[5]  Tanya M. Teslovich,et al.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.

[6]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[7]  M. Fornage,et al.  A genotype risk score predicts type 2 diabetes from young adulthood: the CARDIA study , 2012, Diabetologia.

[8]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[9]  M. Ezzati,et al.  National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants , 2011, The Lancet.

[10]  Patrick Royston,et al.  Multiple imputation using chained equations: Issues and guidance for practice , 2011, Statistics in medicine.

[11]  Stijn Vansteelandt,et al.  Odds ratios for mediation analysis for a dichotomous outcome. , 2010, American journal of epidemiology.

[12]  Daniel F. Gudbjartsson,et al.  Parental origin of sequence variants associated with complex diseases , 2009, Nature.

[13]  S. Grundy,et al.  Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International As , 2009, Circulation.

[14]  J. Meigs,et al.  Dietary Carbohydrates and Cardiovascular Disease Risk Factors in the Framingham Offspring Cohort , 2009, Journal of the American College of Nutrition.

[15]  R. Vasan,et al.  Association of Lifestyle Factors With Abdominal Subcutaneous and Visceral Adiposity , 2009, Diabetes Care.

[16]  Ralph B D'Agostino,et al.  Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. , 2007, Archives of internal medicine.

[17]  S. Srinivasan,et al.  Longitudinal changes in risk variables of insulin resistance syndrome from childhood to young adulthood in offspring of parents with type 2 diabetes: the Bogalusa Heart Study. , 2003, Metabolism: clinical and experimental.

[18]  R. Hanson,et al.  Family and genetic studies of indices of insulin sensitivity and insulin secretion in Pima Indians † ‡ , 2001, Diabetes/metabolism research and reviews.

[19]  P. Wilson,et al.  Parental transmission of type 2 diabetes: the Framingham Offspring Study. , 2000, Diabetes.

[20]  C. Bogardus,et al.  Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. , 2000, American journal of epidemiology.

[21]  S. Kahn,et al.  Heritability of pancreatic beta-cell function among nondiabetic members of Caucasian familial type 2 diabetic kindreds. , 1999, The Journal of clinical endocrinology and metabolism.

[22]  S. Haffner,et al.  Decreased insulin action and insulin secretion predict the development of impaired glucose tolerance , 1996, Diabetologia.

[23]  R. DeFronzo,et al.  The Metabolic Profile of NIDDM Is Fully Established in Glucose-Tolerant Offspring of Two Mexican-American NIDDM Parents , 1992, Diabetes.

[24]  G A Colditz,et al.  Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. , 1992, American journal of epidemiology.

[25]  J. Manson,et al.  Physical activity and incidence of non-insulin-dependent diabetes mellitus in women , 1991, The Lancet.

[26]  A. Krolewski,et al.  Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. , 1990, Annals of internal medicine.

[27]  L. Groop,et al.  Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. , 1989, The New England journal of medicine.

[28]  K. Alberti,et al.  Metabolic abnormalities in children of non-insulin dependent diabetics. , 1986, British medical journal.

[29]  D. Pyke,et al.  Diabetes in identical twins , 1981, Diabetologia.

[30]  W. Kannel,et al.  Some health benefits of physical activity. The Framingham Study. , 1979, Archives of internal medicine.

[31]  D. Pyke,et al.  Diabetes in identical twins. , 1972, Lancet.

[32]  N J Wareham,et al.  The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study , 2012, Diabetologia.

[33]  Anson,et al.  DIET , LIFESTYLE , AND THE RISK OF TYPE 2 DIABETES MELLITUS IN WOMEN , 2001 .

[34]  P. Poulsen,et al.  Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study , 1999, Diabetologia.

[35]  R. DeFronzo,et al.  The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. , 1992, Diabetes.

[36]  A. Krolewski,et al.  Study of glucose removal rate and first phase insulin secretion in the offspring of two parents with non-insulin-dependent diabetes. , 1988, Advances in experimental medicine and biology.