A review of volcanic ash aggregation

Most volcanic ash particles with diameters <63 lm settle from eruption clouds as particle aggregates that cumulatively have larger sizes, lower densities, and higher terminal fall velocities than individual constituent particles. Particle aggregation reduces the atmospheric residence time of fine ash, which results in a proportional increase in fine ash fallout within 10–100 s km from the volcano and a reduction in airborne fine ash mass concentrations 1000 s km from the volcano. Aggregate characteristics vary with distance from the volcano: proximal aggregates are typically larger (up to cm size) with concentric structures, while distal aggregates are typically smaller (sub-millimetre size). Particles comprising ash aggregates are bound through hydro-bonds (liquid and ice water) and electrostatic forces, and the rate of particle aggregation correlates with cloud liquid water availability. Eruption source parameters (including initial particle size distribution, erupted mass, eruption column height, cloud water content and temperature) and the eruption plume temperature lapse rate, coupled with the environmental parameters, determines the type and spatiotemporal distribution of aggregates. Field studies, lab experiments and modelling investigations have already provided important insights on the process of particle aggregation. However, new integrated observations that combine remote sensing studies of ash clouds with field measurement and sampling, and lab experiments are required to fill current gaps in knowledge surrounding the theory of ash aggregate formation.

[1]  J. Martí,et al.  The late Quaternary Diego Hernandez Formation, Tenerife: Volcanology of a complex cycle of voluminous explosive phonolitic eruptions , 2007 .

[2]  Charles B. Connor,et al.  ESTIMATION OF VOLCANIC HAZARDS FROM TEPHRA FALLOUT , 2001 .

[3]  Richard J. Brown,et al.  Event-stratigraphy of a caldera-forming ignimbrite eruption on Tenerife: the 273 ka Poris Formation , 2004 .

[4]  B. Voight,et al.  The eruption of Soufrière Hills Volcano, Montserrat from 1995 to 1999 , 2002 .

[5]  P. Wallace Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data , 2005 .

[6]  M. Smoluchowski,et al.  Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen , 1927 .

[7]  G. Ernst,et al.  Ice nucleation and overseeding of ice in volcanic clouds , 2008 .

[8]  C. Bonadonna,et al.  Tephra fallout in the eruption of Soufrière Hills Volcano, Montserrat , 2002, Geological Society, London, Memoirs.

[9]  Y. Hayakawa Mode of eruption and deposition of the Hachinohe phreatoplinian ash from the Towada volcano, Japan , 1990 .

[10]  R. Sparks,et al.  Fall-out and deposition of volcanic ash during the 1979 explosive eruption of the soufriere of St. Vincent , 1982 .

[11]  W. Melson,et al.  Nuées Ardentes of the 1968 Eruption of Mayon Volcano, Philippines , 1969 .

[12]  M. Pareschi,et al.  A Numerical Simulation of the Plinian Fall Phase of 79 A.D. Eruption of Vesuvius , 1988 .

[13]  R. Draxler An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition , 1998 .

[14]  M. Smith,et al.  Ice nucleation in orographic wave clouds: Measurements made during INTACC , 2001 .

[15]  R. Herd,et al.  Tephra deposits associated with a large lava dome collapse, Soufriere Hills Volcano, Montserrat, 12-15 July 2003 , 2006 .

[16]  Antonella Longo,et al.  A computer model for volcanic ash fallout and assessment of subsequent hazard , 2005, Comput. Geosci..

[17]  Y. Sawada The 1982 Eruption of El Chichon Volcano , 1984 .

[18]  G. Alvarado,et al.  Pyroclastic flow generated by crater-wall collapse and outpouring of the lava pool of Arenal Volcano, Costa Rica , 2002 .

[19]  R. S. Martin,et al.  Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile , 2009 .

[20]  I. Kelman,et al.  Residential building and occupant vulnerability to tephra fall , 2005 .

[21]  Y. Sohn Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea , 1996 .

[22]  P. Bodger,et al.  Investigating the electrical conductivity of volcanic ash and its effect on HV power systems , 2012 .

[23]  K. Wohletz,et al.  Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius , 1983 .

[24]  C. Connor,et al.  Inversion Is the Key to Dispersion: Understanding Eruption Dynamics by Inverting Tephra Fallout , 2006 .

[25]  H. Corbella,et al.  Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano , 1994 .

[26]  W. E. Scott,et al.  Character, mass, distribution, and origin of tephra-fall deposits of the 1989-1990 eruption of redoubt volcano, south-central Alaska , 1994 .

[27]  W. Rose,et al.  Small particles in plumes of Mount St. Helens , 1982 .

[28]  Charles B. Connor,et al.  Statistics in Volcanology , 2006 .

[29]  Experimentally constraining the boundary conditions for volcanic ash aggregation , 2011 .

[30]  Michael Herzog,et al.  A prognostic turbulence scheme for the nonhydrostatic plume model ATHAM , 2003 .

[31]  J. Mahoney,et al.  Origin And Evolution of the Ontong Java Plateau , 2004 .

[32]  A. Wetzel,et al.  Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea , 2004 .

[33]  D. Palladino,et al.  A large K-foiditic hydromagmatic eruption from the early activity of the Alban Hills Volcanic District, Italy , 2001 .

[34]  Radar Detection of Cloud-Seeding Effects , 1981, Science.

[35]  Andrew W. Woods,et al.  Moist convection and the injection of volcanic ash into the atmosphere , 1993 .

[36]  R. Rosa,et al.  Pyroclastic surges of the Pleistocene Monte Guardia sequence (Lipari Island, Italy): depositional processes , 1999 .

[37]  R. White,et al.  The 2003 eruption of Anatahan volcano, Commonwealth of the Northern Mariana Islands: Chronology, volcanology, and deformation , 2005 .

[38]  William I. Rose,et al.  Volcanic Particle Aggregation in Explosive Eruption Columns Part II , 2006 .

[39]  R. Schumacher A reappraisal of Mount St. Helens' ash clusters - depositional model from experimental observation , 1994 .

[40]  Costanza Bonadonna,et al.  Modeling tephra sedimentation from a Ruapehu weak plume eruption , 2005 .

[41]  M. Sheridan,et al.  Morphology of ash aggregates from wet pyroclastic surges of the 1982 eruption of El Chichón Volcano, Mexico , 2005 .

[42]  E. Williams,et al.  Total Water Contents in Volcanic Eruption Clouds and Implications for Electrification and Lightning , 2004 .

[43]  Stephen Lane,et al.  The origin of accretionary lapilli , 1994 .

[44]  R. Sparks,et al.  The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites , 1977 .

[45]  A. Woods,et al.  Reply to comment by C. Textor and G. G. J. Ernst on“Particle aggregation in volcanic eruption columns” , 2004 .

[46]  R. Sparks,et al.  Sedimentology of deposits from the pyroclastic density current of 26 December 1997 at Soufrière Hills Volcano, Montserrat , 2002, Geological Society, London, Memoirs.

[47]  W. Hildreth,et al.  Volcán Quizapu, Chilean Andes , 1992 .

[48]  J. G. Moore,et al.  Base surge in recent volcanic eruptions , 1967 .

[49]  C. Mandeville,et al.  Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption , 1996 .

[50]  Dynamics of volcanic and meteorological clouds produced on 26 December (Boxing Day) 1997 at Soufrière Hills Volcano, Montserrat , 2002, Geological Society, London, Memoirs.

[51]  M. Rosi A model for the formation of vesiculated tuff by the coalescence of accretionary lapilli , 1992 .

[52]  Augusto Neri,et al.  The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation , 2008 .

[53]  Augusto Neri,et al.  The VOL‐CALPUFF model for atmospheric ash dispersal: 2. Application to the weak Mount Etna plume of July 2001 , 2008 .

[54]  Michael Herzog,et al.  Volcanic plume simulation on large scales , 1998 .

[55]  Richard J. Brown,et al.  The Quaternary pyroclastic succession of southeast Tenerife, Canary Islands: explosive eruptions, related caldera subsidence, and sector collapse , 2003, Geological Magazine.

[56]  N. Óskarsson The interaction between volcanic gases and tephra: Fluorine adhering to tephra of the 1970 hekla eruption , 1980 .

[57]  W. K. Brown,et al.  Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash , 1989 .

[58]  K. Dean,et al.  PUFF: A high-resolution volcanic ash tracking model , 1998 .

[59]  J. Viramonte,et al.  Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén volcano, Chile. , 2012 .

[60]  David J. Thomson,et al.  The U.K. Met Office's Next-Generation Atmospheric Dispersion Model, NAME III , 2007 .

[61]  H. Schmincke,et al.  Evolution of the Quaternary melitite-nephelinite Herchenberg volcano (East Eifel) , 1990 .

[62]  T. Sisson Blast ashfall deposit of May 18, 1980 at Mount St. Helens, Washington , 1995 .

[63]  Thorvaldur Thordarson,et al.  Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling , 2006 .

[64]  Y. Dufrêne,et al.  Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles , 2007 .

[65]  T. Mather,et al.  Electrification of volcanic plumes , 2006 .

[66]  T. Casadevall,et al.  The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations , 1994 .

[67]  William I. Rose,et al.  Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash , 2006 .

[68]  T. Thordarson Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192 Site 1184: a record of subaerial phreatomagmatic eruptions on the Ontong Java Plateau , 2004, Geological Society, London, Special Publications.

[69]  R. Hiscott,et al.  Pyroclastic surges of the Pleistocene Monte Guardia sequence (Lipari Island, Italy): depositional processes , 1997 .

[70]  Colin J. N. Wilson,et al.  The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview , 2001 .

[71]  G. Giordano Facies characteristics and magma–water interaction of the White Trachytic Tuffs (Roccamonfina Volcano, southern Italy) , 1998 .

[72]  G. Ernst,et al.  Comment on “Particle aggregation in volcanic eruption columns” by Graham Veitch and Andrew W. Woods , 2004 .

[73]  G. Ernst,et al.  Origin of the Mount Pinatubo climactic eruption cloud: Implications for volcanic hazards and atmospheric impacts , 2002 .

[74]  R. Lawson,et al.  Observations and Numerical Simulations of the Origin and Development of Very Large Snowflakes , 1998 .

[75]  Richard J. Brown,et al.  Origin of accretionary lapilli within ground-hugging density currents: Evidence from pyroclastic couplets on Tenerife , 2010 .

[76]  R. Herd,et al.  Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufrière Hills volcano, Montserrat , 2005 .

[77]  M. James,et al.  Density, construction, and drag coefficient of electrostatic volcanic ash aggregates , 2003 .

[78]  J. G. Moore,et al.  The 1965 eruption of taal volcano. , 1966, Science.

[79]  T. Reimer Accretionary Lapilli in Volcanic Ash Falls: Physical Factors Governing Their Formation , 1983 .

[80]  Richard Turner,et al.  Performance of the program ASHFALL for forecasting ashfall during the 1995 and 1996 eruptions of Ruapehu volcano , 1999 .

[81]  R. K. Sorem Volcanic ash clusters: Tephra rafts and scavengers , 1982 .

[82]  R. S. J. Sparks,et al.  A gravity current model for the May 18, 1980 Mount St Helens plume , 1980 .

[83]  U. Schumann,et al.  Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010 , 2010 .

[84]  W. Rose,et al.  El Chichón volcano, April 4, 1982: volcanic cloud history and fine ash fallout , 2009 .

[85]  J. McPhie Primary and redeposited facies from a large-magnitude, rhyolitic, phreatomagmatic eruption: Cana Creek Tuff, Late Carboniferous, Australia , 1986 .

[86]  D. Lilly,et al.  The mysteries of Mammatus clouds: Observations and formation mechanisms , 2006 .

[87]  H. Schmincke,et al.  Models for the origin of accretionary lapilli , 1995 .

[88]  P. Baxter,et al.  The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation , 2006 .

[89]  T. Koyaguchi,et al.  Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits: 1. Methods , 2001 .

[90]  Arnau Folch,et al.  A three-dimensional Eulerian model for transport and deposition of volcanic ashes , 2006 .

[91]  S. Thorarinsson,et al.  Surtsey The New Island in the North Atlantic , 1967 .

[92]  T. Barry,et al.  ‘Snake River (SR)-type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions , 2007, Bulletin of Volcanology.

[93]  H. Schmincke,et al.  Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano , 1991 .

[94]  Arlene Laing,et al.  Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand , 2005 .

[95]  C. Bonadonna,et al.  Atmospheric and Environmental Impacts of Volcanic Particulates , 2010 .

[96]  A. Prata,et al.  Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera , 2009 .

[97]  M. Branney Eruption and depositional facies of the Whorneyside Tuff Formation, English Lake District: An exceptionally large-magnitude phreatoplinian eruption , 1991 .

[98]  Michael Herzog,et al.  Effect of environmental conditions on volcanic plume rise , 1999 .

[99]  M. Hilton,et al.  The aerodynamic behaviour of volcanic aggregates , 1993 .

[100]  C. Bonadonna,et al.  Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat , 2002, Geological Society, London, Memoirs.

[101]  A. Neri,et al.  The VOL-CALPUFF Model for Atmospheric Ash , 2007 .

[102]  Murphy,et al.  Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies , 1999, Science.

[103]  G. Valentine,et al.  Turbulent transport and deposition of the Ito pyroclastic flow: Determinations using anisotropy of magnetic susceptibility , 1997 .

[104]  J. F. Lerbekmo The Dorothy bentonite: an extraordinary case of secondary thickening in a late Campanian volcanic ash fall in central Alberta , 2002 .

[105]  Arnau Folch,et al.  Ash Dispersal Forecast and Civil Aviation Workshop - Consensual Document , 2011 .

[106]  R. Hoblitt Was the 18 May 1980 lateral blast at Mt St Helens the product of two explosions? , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[107]  Marcus I. Bursik,et al.  Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores) , 1992 .

[108]  J. A. Brod,et al.  Kamafugitic diatremes: their textures and field relationships with examples from the Goiás alkaline province, Brazil , 2005 .

[109]  B. Houghton,et al.  Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits , 1993 .

[110]  Maurizio Ripepe,et al.  Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations , 2011 .

[111]  R. Lawson,et al.  In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds , 2006 .

[112]  Stephen Self,et al.  Ashfall dispersal for the 16 September 1986, eruption of Lascar, Chile, calculated by a turbulent diffusion model , 1991 .

[113]  William I. Rose,et al.  Scavenging of volcanic aerosol by ash: Atmospheric and volcanologic implications , 1977 .

[114]  A. Krueger,et al.  Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects , 1995, Nature.

[115]  G. Andrews,et al.  Rhyolitic ignimbrites in the Rogerson Graben, southern Snake River Plain volcanic province: volcanic stratigraphy, eruption history and basin evolution , 2007, Bulletin of Volcanology.

[116]  Arnau Folch,et al.  A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation , 2010 .

[117]  Pierre Delmelle,et al.  Surface area, porosity and water adsorption properties of fine volcanic ash particles , 2005 .

[118]  J. Pacheco,et al.  Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent surtseyan eruption , 2001 .

[119]  R. Janda,et al.  Proximal pyroclastic deposits from the 1989-1990 eruption of Redoubt Volcano, Alaska: stratigraphy, distribution, and physical characteristics , 1994 .

[120]  D. L. Peck,et al.  Accretionary Lapilli in Volcanic Rocks of the Western Continental United States , 1962, The Journal of Geology.

[121]  K. Prestegaard,et al.  The 1982 eruptions of El Chichón Volcano (Chiapas, Mexico): Character of the eruptions, ash-fall deposits, and gasphase , 1984 .

[122]  Costanza Bonadonna,et al.  Sedimentation from strong volcanic plumes , 2003 .

[123]  P. Cole,et al.  A facies interpretation of the eruption and emplacement mechanisms of the upper part of the Neapolitan Yellow Tuff, Campi Flegrei, southern Italy , 1993 .

[124]  Richard J. Brown,et al.  Widespread transport of pyroclastic density currents from a large silicic tuff ring: the Glaramara tuff, Scafell caldera, English Lake District, UK , 2007 .

[125]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .

[126]  Andrew W. Woods,et al.  Particle aggregation in volcanic eruption columns , 2001 .

[127]  R. D'amours,et al.  Application of the atmospheric Lagrangian particle dispersion model MLDP0 to the 2008 eruptions of Okmok and Kasatochi volcanoes , 2010 .

[128]  C. Neal,et al.  Areal distribution, thickness, mass, volume, and grain size of tephra-fall deposits from the 1992 eruptions of Crater Peak vent, Mt. Spurr Volcano, Alaska , 2001 .

[129]  W. Rose,et al.  Particle sizes of andesitic ash fallout from vertical eruptions and co-pyroclastic flow clouds, Volcán de Colima, Mexico , 2009 .

[130]  A. Stohl,et al.  Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 , 2005 .

[131]  H. Sigurdsson,et al.  Computer simulation of transport and deposition of the campanian Y-5 ash , 1983 .

[132]  Arnau Folch,et al.  A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application , 2010 .

[133]  W. Rose,et al.  Sedimentological constraints on hydrometeor-enhanced particle deposition: 1992 Eruptions of Crater Peak, Alaska , 2009 .

[134]  William I. Rose,et al.  Hydrometeor-enhanced tephra sedimentation: Constraints from the 18 May 1980 eruption of Mount St. Helens , 2009 .

[135]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[136]  M. Branney,et al.  Silicic phreatomagmatism in the Snake River Plain: the Deadeye Member , 2010 .

[137]  David J. Schneider,et al.  Observations of Volcanic Clouds in Their First Few Days of Atmospheric Residence: The 1992 Eruptions of Crater Peak, Mount Spurr Volcano, Alaska , 2001, The Journal of Geology.

[138]  S. Self Large-scale phreatomagmatic silicic volcanism: A case study from New Zealand , 1983 .

[139]  G. Giordano,et al.  Large volume phreatomagmatic ignimbrites from the Colli Albani volcano (Middle Pleistocene, Italy) , 2002 .

[140]  W. Rose,et al.  Ice in Volcanic Clouds: When and Where? , 2004 .

[141]  M. James,et al.  Experimental investigation of volcanic particle aggregation in the absence of a liquid phase , 2002 .

[142]  Haraldur Sigurdsson,et al.  Influence of particle aggregation on deposition of distal tephra from the MAy 18, 1980, eruption of Mount St. Helens volcano , 1982 .

[143]  R. S. J. Sparks,et al.  Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number , 1998 .

[144]  M. T. Pareschi,et al.  A numerical model for simulation of tephra transport and deposition: Applications to May 18, 1980, Mount St. Helens eruption , 1988 .

[145]  K. Wohletz,et al.  Direct Rate Measurements of Eruption Plumes at Augustine Volcano: A Problem of Scaling and Uncontrolled Variables , 1988 .

[146]  Carmela Freda,et al.  Aggregation-dominated ash settling from the Eyjafjallajökull volcanic cloud illuminated by field and laboratory high-speed imaging , 2011 .

[147]  A. Takada,et al.  Co-ignimbrite ash-fall deposits of the 1991 eruptions of Fugen-dake, Unzen Volcano, Japan , 1999 .