On the expected number of real roots of a system of random polynomial equations
暂无分享,去创建一个
[1] Alan Edelman,et al. How many zeros of a random polynomial are real , 1995 .
[2] Leboeuf,et al. Distribution of roots of random polynomials. , 1992, Physical review letters.
[3] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[4] J. M. Rojas,et al. On the Average Number of Real Roots of Certain Random Sparse Polynomial Systems , 1996 .
[5] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[6] L. Santaló. Integral geometry and geometric probability , 1976 .
[7] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[8] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[9] S. Smale,et al. Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .
[10] A. T. Bharucha-Reid,et al. The Number and Expected Number of Real Zeros of Other Random Polynomials , 1986 .
[11] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[12] Andrew McLennan,et al. The expected number of real roots of a multihomogeneous system of polynomial equations , 1999, math/9904120.
[13] R. Leighton,et al. The Feynman Lectures on Physics; Vol. I , 1965 .
[14] On the Roots of Algebraic Equations , 1951 .
[15] A. T. Bharucha-Reid,et al. Random Matrices and Random Algebraic Polynomials , 1986 .
[16] J. M. Hammersley,et al. The Zeros of a Random Polynomial , 1956 .
[17] K. Farahmand. On the Average Number of Real Roots of a Random Algebraic Equation , 1986 .
[18] A. Edelman,et al. How many eigenvalues of a random matrix are real , 1994 .
[19] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[20] J. Maurice Rojas,et al. Random Sparse Polynomial Systems , 2000 .