Time-reversed wave mixing in nonlinear optics

Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.

[1]  Allard Mosk,et al.  Active spatial control of plasmonic fields , 2011 .

[2]  A. Bloom Quantum Electronics , 1972, Nature.

[3]  A. Mosk,et al.  Exploiting disorder for perfect focusing , 2009, 0910.0873.

[4]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[5]  Y. Chong,et al.  Hidden black: coherent enhancement of absorption in strongly scattering media. , 2011, Physical review letters.

[6]  Hui Cao,et al.  Coherent perfect absorbers: Time-reversed lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[7]  G. Lerosey,et al.  Time reversal of electromagnetic waves. , 2004, Physical review letters.

[8]  Coherent perfect absorbers for transient, periodic, or chaotic optical fields: Time-reversed lasers beyond threshold , 2012 .

[9]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[10]  O. Katz,et al.  Focusing and compression of ultrashort pulses through scattering media , 2010, 1012.0413.

[11]  G. Stegeman,et al.  Phase-controlled transistor action by cascading of second-order nonlinearities in KTP. , 1994, Optics letters.

[12]  E. Hahn,et al.  Spin Echoes , 2011 .

[13]  Jun Chen,et al.  Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference , 2007 .

[14]  Amnon Yariv,et al.  Phase conjugate optics and real time holography (A) , 1978 .

[15]  Shanhui Fan,et al.  Time reversal of light with linear optics and modulators. , 2004, Physical review letters.

[16]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[17]  G. Lerosey,et al.  Controlling waves in space and time for imaging and focusing in complex media , 2012, Nature Photonics.

[18]  Li Ge,et al.  PT-symmetry breaking and laser-absorber modes in optical scattering systems. , 2010, Physical review letters.

[19]  Y. Chong,et al.  Noise properties of coherent perfect absorbers and critically coupled resonators , 2012, 1211.7147.

[20]  Robert W. Boyd,et al.  Ultrafast and Intense-Field Nonlinear Optics , 2020, Nonlinear Optics.

[21]  D. Miller,et al.  Time reversal of optical pulses by four-wave mixing. , 1980, Optics letters.

[22]  G. Stegeman,et al.  Self-focusing and self-defocusing by cascaded second-order effects in KTP. , 1992, Optics letters.

[23]  W. Kuperman,et al.  Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror , 1998 .

[24]  P. Kumar,et al.  Deamplification response of a traveling-wave phase-sensitive optical parametric amplifier. , 1994, Optics letters.

[25]  S. Longhi Coherent perfect absorption in a homogeneously broadened two-level medium , 2011, 1111.3463.

[26]  Guang S. He,et al.  Optical phase conjugation: principles, techniques, and applications , 2002 .

[27]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[28]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[29]  Mathias Fink,et al.  Acoustic time-reversal mirrors , 2001 .

[30]  M. Fejer,et al.  Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide. , 2002, Optics letters.

[31]  R. Boyd Nonlinear Optics, Third Edition , 2008 .

[32]  S. Naguleswaran,et al.  ONSAGER RELATIONS AND TIME-REVERSAL SYMMETRY IN NONLINEAR OPTICS , 1998 .

[33]  S. Longhi Time-reversed optical parametric oscillation. , 2011, Physical review letters.